A Deep Reinforcement Learning Framework for Detecting Fraudulent Bank Account Openings

Authors

  • Abdul Qayoom 1- School of Computer Science and Technology, Southwest University of Science and Technology, 2- Department of Computer Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Lasbela, Balochistan, Pakistan https://orcid.org/0000-0002-5510-6078
  • Wu Yadong 1- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China. , 2- School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
  • Wang Song School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, China
  • Sammar Abbas School of Information Engineering, SouthWest University of Science and Technology, Mianyang, Sichuan, China
  • Nadeem Ghafoor School of Computer Science and Technology, Southwest University of Science and Technology https://orcid.org/0009-0003-4871-650X

DOI:

https://doi.org/10.33317/ssurj.653

Keywords:

Artificial Intelligence in Banking, Deep Reinforcement Learning, Bank Account Fraud Detection, Deep Q-networks, Financial Fraud Detection

Abstract

Online banking has become more popular and widespread. A huge number of customers open new bank accounts every day, which leads to a rise in fraudulent account openings. Many fraudulent activities related to this have been reported over time. It has remained a difficult task to detect fraudulent accounts efficiently. Artificial Intelligence (AI) is performing well in all the domains in the real world. So, the objective of this research is to build the most effective model to detect electronic financial transaction fraud in bank account opening. This research work aims to solve this problem (1) how to use deep reinforcement learning (DRL) for the detection of fraudulent bank accounts and (2) develop a Deep Q-Networks (DQN) based solution architecture for the detection of bank account opening fraud in an efficient way. Our proposed model achieved the highest fraud detection accuracy with 97% using the DQN algorithm with the benchmark Kaggle dataset for bank account fraud detection.

References

USMAN, AU, S. B. Abdullahi, J. Ran, Y. Liping, A. A. Suleiman, H. Daud et al.(2024). Modeling the Dynamic Behaviors of Bank Account Fraudsters using combined Simultaneous Game Theory with Neural Networks. DOI: https://doi.org/10.21203/rs.3.rs-3928159/v1

Alhashmi, A. A., Alashjaee, A. M., Darem, A. A., Alanazi, A. F., & Effghi, R. (2023). An Ensemble-Based Fraud Detection Model for Financial Transaction Cyber Threat Classification and Countermeasures. Engineering, Technology & Applied Science Research, 13(6), 12433-12439. DOI: https://doi.org/10.48084/etasr.6401

Prayoga, A. H., & Voutama, A. (2024). Pengembangan Aplikasi Bank Account Fraud Detection Dengan Menggunakan Algoritma XGBOOST. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 2916-2922. DOI: https://doi.org/10.36040/jati.v8i3.9564

Kalyani, G., Mishra, A. K., Harish, D., Tyagi, A. K., Sajidha, S. A., & Pandey, S. (2024). Detection of Bank Fraud Using Machine Learning Techniques. Automated Secure Computing for Next‐Generation Systems, 223-241. DOI: https://doi.org/10.1002/9781394213948.ch12

Desrousseaux, R., Bernard, G., & Mariage, J. J. (2019, September). Identify Theft Detection on e-Banking Account Opening. In IJCCI (pp. 556-563). DOI: https://doi.org/10.5220/0008648605560563

Wan, W., & Li, W. (2021, March). A False Bank Accounts Detection Method Based on Naive Bayesian Network. In Journal of Physics: Conference Series (Vol. 1820, No. 1, p. 012094). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1820/1/012094

Lv, F., Wang, W., Wei, Y., Sun, Y., Huang, J., & Wang, B. (2019). Detecting Fraudulent Bank Account Based on Convolutional Neural Network with Heterogeneous Data. Mathematical Problems in Engineering, 2019(1), 3759607. DOI: https://doi.org/10.1155/2019/3759607

Singh, V., Chen, S. S., Singhania, M., Nanavati, B., & Gupta, A. (2022). How are Reinforcement Learning and Deep Learning Algorithms used for Big Data Based Decision Making in Financial Industries–A Review and Research Agenda. International Journal of Information Management Data Insights, 2(2), 100094. DOI: https://doi.org/10.1016/j.jjimei.2022.100094

Nugroho, A. S. E., & Hamsal, M. (2021). Research Trend of Digital Innovation in Banking: a Bibliometric Analysis. Journal of Governance Risk Management Compliance and Sustainability, 1(2), 61-73. DOI: https://doi.org/10.31098/jgrcs.v1i2.720

Yu, H., & He, X. (2021). Corporate Data Sharing, Leakage, and Supervision Mechanism Research. Sustainability, 13(2), 931. DOI: https://doi.org/10.3390/su13020931

Kemp, S., & Erades Pérez, N. (2023). Consumer Fraud Against Older Adults in Digital Society: Examining Victimization and its Impact. International Journal of Environmental Research and Public Health, 20(7), 5404. DOI: https://doi.org/10.3390/ijerph20075404

Žigienė, G., Rybakovas, E., & Alzbutas, R. (2019). Artificial Intelligence Based Commercial Risk Management Framework for SMEs. Sustainability, 11(16), 4501. DOI: https://doi.org/10.3390/su11164501

Amin, A., Rahmawaty, M. F. L., Masrom, S., & Rahman, R. A. (2023). Tree-Based Machine Learning and Deep Learning in Predicting Investor Intention to Public Private Partnership. en. In: International Journal of Advanced Computer Science and Applications, 14. DOI: https://doi.org/10.14569/IJACSA.2023.0140121

Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., & Nandi, A. K. (2018). Credit Card Fraud Detection using Adaboost and Majority Voting. IEEE access, 6, 14277-14284. DOI: https://doi.org/10.1109/ACCESS.2018.2806420

Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017, October). Credit Card Fraud Detection using Machine Learning Techniques: A Comparative Analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. DOI: https://doi.org/10.1109/ICCNI.2017.8123782

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2017). Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3784-3797. DOI: https://doi.org/10.1109/TNNLS.2017.2736643

Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., & Anderla, A. (2019, March). Credit Card Fraud Detection-Machine Learning Methods. In 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/INFOTEH.2019.8717766

Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., & Beling, P. (2018, April). Deep Learning Detecting Fraud in Credit Card Transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS) (pp. 129-134). IEEE. DOI: https://doi.org/10.1109/SIEDS.2018.8374722

Mahajan, S., Kolhar, S., Patil, A., Mahajan, S., Menpara, J., & Mahajan, A. (2024). Credit Card Fraud Detection using Reinforcement Learning. International Journal of Computing and Digital Systems, 16(1), 189-198.

Sisodia, D. S., Reddy, N. K., & Bhandari, S. (2017, September). Performance Evaluation of Class Balancing Techniques for Credit Card Fraud Detection. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 2747-2752). IEEE. DOI: https://doi.org/10.1109/ICPCSI.2017.8392219

Melo-Acosta, G. E., Duitama-Munoz, F., & Arias-Londono, J. D. (2017, August). Fraud Detection in Big Data using Supervised and Semi-Supervised Learning Techniques. In 2017 IEEE Colombian Conference on Communications and Computing (COLCOM) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ColComCon.2017.8088206

Jesus, S., Pombal, J., Alves, D., Cruz, A., Saleiro, P., Ribeiro, R. et al. (2022). Turning The Tables: Biased, Imbalanced, Dynamic Tabular Datasets For Ml Evaluation. Advances in Neural Information Processing Systems, 35, 33563-33575.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,et al. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27.

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling Tabular Data using Conditional Gan. Advances in Neural Information Processing Systems, 32.

Gebretsadik, A., Kumar, R., Fissha, Y., Kide, Y., Okada, N., Ikeda, H. et al (2024). Enhancing Rock Fragmentation Assessment in Mine Blasting Through Machine Learning Algorithms: A Practical Approach. Discover Applied Sciences, 6(5), 223. DOI: https://doi.org/10.1007/s42452-024-05888-0

Martinez, C., Perrin, G., Ramasso, E., & Rombaut, M. (2018, September). A Deep Reinforcement Learning Approach For Early Classification of Time Series. In 2018 26th European Signal Processing Conference (EUSIPCO) (pp. 2030-2034). IEEE. DOI: https://doi.org/10.23919/EUSIPCO.2018.8553544

Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7, 133653-133667. DOI: https://doi.org/10.1109/ACCESS.2019.2941229

Wang, X., Zhao, C., Huang, T., Chakrabarti, P., & Kurths, J. (2023). Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning. IEEE Transactions on Signal and Information Processing over Networks, 9, 13-23. DOI: https://doi.org/10.1109/TSIPN.2023.3239654

Zolfpour-Arokhlo, M., Selamat, A., Hashim, S. Z. M., & Afkhami, H. (2014). Modeling of Route Planning System based on Q Value-based Dynamic Programming with Multi-Agent Reinforcement Learning Algorithms. Engineering Applications of Artificial Intelligence, 29, 163-177. DOI: https://doi.org/10.1016/j.engappai.2014.01.001

Usman, A. U., Abdullahi, S. B., Liping, Y., Alghofaily, B., Almasoud, A. S., & Rehman, A. (2024). Financial Fraud Detection using Value-at-Risk with Machine Learning in Skewed Data. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2024.3393154

Downloads

Published

2024-12-27

How to Cite

Qayoom, A., Yadong, W., Song, W., Abbas, S., & Ghafoor, N. (2024). A Deep Reinforcement Learning Framework for Detecting Fraudulent Bank Account Openings. Sir Syed University Research Journal of Engineering & Technology, 14(2), 85–92. https://doi.org/10.33317/ssurj.653