Analysis and Characterization of Composites for their potential use in Disc Brake Pad
DOI:
https://doi.org/10.33317/ssurj.622Keywords:
Ceramic Brake Pads, Disc Braking System, Electron Dispersive Spectroscopy, Vehicle, Wear ResistanceAbstract
Brake pads are crucial for vehicle safety, converting kinetic energy to halt motion. They come in types like organic, semi-metallic, ceramic, and metallic. Beyond automotive, brake pads find application in industries such as aerospace, railways, manufacturing, and wind energy for controlled deceleration and safety. This study is primarily concerned with the quality and appropriateness of ceramic brake pads for
automotive applications, which are an essential aspect of braking systems for vehicles. The performance characteristics of ceramic brake pads are well established, and this study explores the variables affecting their quality. Under high pressure, brake pad samples are prepared in the study using Powder Metallurgy (PM), which guarantees superior mechanical qualities by removing interface bonding problems. The samples are then sintered at 2850. Hardness, temperature resistance, wear resistance, and Electron Dispersive Spectroscopy (EDS) analysis are all included in the evaluation to ascertain the make-up and distribution of the materials in the brake pad. EDS sheds light on the degree
of sintering and the presence of reinforcements. Heat resistance is evaluated using controlled thermal testing, while wear resistance and hardness are determined through Rockwell hardness testing and wear tests, respectively. These measurements are validated for use in automotive disc braking systems for vehicles and motorcycles. The findings are more reliable thanks to statistical analysis done with
MINITAB. The study highlights research gaps in environmentally friendly materials, emerging technology impacts, and long-term brake pad durability.
References
Sathishkumar, A., Soundararajan, R., Vel, T. M., Arjith, M. B. S., & Sakthivel, G. (2022). Review on regenerative braking system. Emobility: a new era in automotive technology, 149-163.
Milanés, V., Shladover, S. E., Spring, J., Nowakowski, C., Kawazoe, H., & Nakamura, M. (2013). Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on Intelligent
Transportation Systems, 15(1), 296-305.
Rao, R. U., & Babji, G. (2015). A Review paper on alternate materials for Asbestos brake pads and its characterization. International Research Journal of Engineering and Technology, 2(2), 556-562.
Günay, M., Korkmaz, M. E., & Özmen, R. (2020). An investigation on braking systems used in railway vehicles. Engineering Science and Technology, an International Journal, 23(2), 421-431.
Mulani, S. M., Kumar, A., Shaikh, H. N. E. A., Saurabh, A., Singh, P. K., & Verma, P. C. (2022). A review on recent development and challenges in automotive brake pad-disc system. Materials Today: Proceedings, 56, 447-454.
Viswanatha, B. M., Kumar, M. P., Basavarajappa, S., & Kiran, T. S. (2016). A Study on Metal Matrix Composites for Disc Brake Systems. i-Manager's Journal on Material Science, 4(1), 6.
Belhocine, A., & Omar, W. Z. W. (2018). CFD analysis of the brake disc and the wheel house through air flow: Predictions of Surface heat transfer coefficients (STHC) during braking operation. Journal
of Mechanical Science and Technology, 32, 481-490.
Mavrigian, M. (2014). Performance Exhaust Systems: How to Design, Fabricate, and Install (Vol. 277). CarTech Inc.
Borawski, A. (2020). Conventional and unconventional materials used in the production of brake pads–review. Science and Engineering of Composite Materials, 27(1), 374-396.
Ilie, F., & Cristescu, A. C. (2022). Tribological behavior of friction materials of a disk-brake pad braking system affected by structural changes—A review. Materials, 15(14), 4745.
Chatterjee, A., Sen, S., Paul, S., Roy, P., Sutradhar, G., & Ghosh, M. (2023). Application of SiC and Graphite reinforced Aluminium Metal Matrix Composite in Braking Systems and its Validation
Through Finite Element Analysis. Journal of The Institution of Engineers (India): Series D, 104(2), 449-464.
Kamarul Bahrin B Mohd Kamil, K. B. (2008). Temperature Distribution on a Car Disc Brake. Retrieved from:http://utpedia.utp.edu.my/id/eprint/3829/1/Title_page2.pdf
Achebe, C. H., Chukwuneke, J. L., Anene, F. A., & Ewulonu, C. M. (2019). A retrofit for asbestos-based brake pad employing palm kernel fiber as the base filler material. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(9), 1906-1913.
Akıncıoğlu, G., Öktem, H. A. S. A. N., Uygur, I., & Akıncıoğlu, S. (2018). Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron
dusts. Arabian Journal for Science and Engineering, 43, 4727-4737.
Kumar, V. V., & Kumaran, S. S. (2019). Friction material composite: types of brake friction material formulations and effects of various ingredients on brake performance–a review. Materials
Research Express, 6(8), 082005.
Kosmač, T., Dakskobler, A., Kermc, M., & Stadler, Z. (2006). Ceramic Piston for Hydraulic Brakes: Design Study. Advances in Science and Technology, 45, 1771-1775.
Premi, M., & Sharma, V. (2022). Mixing and Forming. In AgroProcessing and Food Engineering: Operational and Application Aspects (pp. 253-305). Singapore: Springer Singapore.
Fernandez-Diaz, L., Castillo, J., Sasieta-Barrutia, E., Arnaiz, M., Cabello, M., Judez, X., ... & Villaverde, A. (2023). Mixing methods for solid state electrodes: techniques, fundamentals, recent
advances, and perspectives. Chemical Engineering Journal, 464, 142469.
Shi, X., Zhao, Z., Chen, X., Kong, K., & Yuan, J. (2022). Investigation of Fluidity and Strength of Enhanced Foam-Cemented Paste Backfill. Materials, 15(20), 7101.
Fernandez-Diaz, L., Castillo, J., Sasieta-Barrutia, E., Arnaiz, M., Cabello, M., Judez, X., ... & Villaverde, A. (2023). Mixing methods for solid state electrodes: techniques, fundamentals, recent advances, and perspectives. Chemical Engineering Journal, 464, 142469.
Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable fiber‐reinforced composites: A Review. Advanced Sustainable Systems, 6(11), 2200258.
Jacko, M. G., & Rhee, S. K. (2000). Brake linings and clutchfacings. Kirk‐Othmer Encyclopedia of Chemical Technology.
Pedroso, J. M., Enger, M., Bandeira, P., & Magalhães, F. D. (2022). Comparative Study of Friction and Wear Performance of PEK, PEEK and PEKK Binders in Tribological Coatings. Polymers, 14(19), 4008.
Song, P., & Wang, H. (2020). High‐Performance Polymeric
Materials through Hydrogen‐Bond Cross‐Linking. Advanced Materials, 32(18), 1901244.
Irawan, A. P., Fitriyana, D. F., Tezara, C., Siregar, J. P., Laksmidewi, D., Baskara, G. D., ... & Najid, N. (2022). Overview of the Important Factors Influencing the Performance of EcoFriendly Brake Pads. Polymers, 14(6), 1180.
Singh, T., & Patnaik, A. (2015). Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking. Archives of Civil and Mechanical Engineering, 15(1), 151-161.
Mulani, S. M., Kumar, A., Shaikh, H. N. E. A., Saurabh, A., Singh, P. K., & Verma, P. C. (2022). A review on recent development and challenges in automotive brake pad-disc system. Materials Today: Proceedings, 56, 447-454.
Kim, S. J., Cho, M. H., Cho, K. H., & Jang, H. (2007). Complementary effects of solid lubricants in the automotive brake lining. Tribology international, 40(1), 15-20.
Talati, F., & Jalalifar, S. (2008). Investigation of Heat Transfer Phenomena in a Ventilated Disk Brake Rotor with Straight Radial Rounded Vanes. Journal of Applied Sciences, 8(20), 3583-3592.
Wasilewski, P. (2020). Frictional Heating in Railway Brakes: A Review of Numerical Models. Archives of Computational Methods in Engineering, 27(1), 45-58.
Kulkarni, A. R., & Mahale, R. (2020). Impact of Design Factors of Disc Brake Rotor on Braking Performance. International Journal of Engineering and Technical Research 9(8).
Olabi, A. G., Wilberforce, T., Obaideen, K., Sayed, E. T., Shehata, N., Alami, A. H., & Abdelkareem, M. A. (2023). Micromobility: Progress, benefits, challenges, policy and regulations, energy
sources and storage, and its role in achieving sustainable development goals. International Journal of Thermofluids, 17, 100292.
Patil, L. N., Khairnar, H. P., Hole, J. A., Mate, D. M., Dube, A. V., Panchal, R. N., & Hiwase, V. B. (2022). An Experimental Investigation of Wear Particles Emission and Noise Level from Smart Braking System. Evergreen, 9(3), 711-720.
Blau, P. J., & McLaughlin, J. C. (2003). Effects of water films and sliding speed on the frictional behavior of truck disc brake materials. Tribology international, 36(10), 709-715.
Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., ... & Du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design, 209, 110008.
Sagberg, F., Selpi, Bianchi Piccinini, G. F., & Engström, J. (2015). A Review of Research on Driving Styles and Road Safety. Human Factors, 57(7), 1248-1275.
Ren, Z., Verma, A. S., Li, Y., Teuwen, J. J., & Jiang, Z. (2021). Offshore wind turbine operations and maintenance: A state-of-theart review. Renewable and Sustainable Energy Reviews, 144, 110886.
Bi, X. T., & Masnadi, M. S. (2017). Multiphase Reactors for Biomass Processing and Thermochemical Conversions. Multiphase Reactor Engineering for Clean and Low‐Carbon Energy Applications, 331-376.
Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-tocradle design: creating healthy emissions–a strategy for eco effective product and system design. Journal of cleaner production,
(13-14), 1337-1348.
Renz, R., Seifert, G., & Krenkel, W. (2012). Integration of CMC Brake Disks in Automotive Brake Systems. International Journal of Applied Ceramic Technology, 9(4), 712-724
Shihundla, B. T., Mpofu, K., & Adenuga, O. T. A case study of Product-Service integration for Train Braking Systems.
Sharma, A. K., Bhandari, R., Aherwar, A., Rimašauskienė, R., & Pinca-Bretotean, C. (2020). A study of advancement in application opportunities of aluminum metal matrix composites. Materials Today: Proceedings, 26, 2419-2424.
Jaafar, T. R., Saleh, M. H., Roslani, N., Othman, E. A., Kemin, S., & Kasiran, R. (2008). Braking Performances of Brake Pad for Passenger Car. Jurnal Teknologi, 49, 77-94.
Krenkel, W., Heidenreich, B., & Renz, R. (2002). C/C‐SiC composites for advanced friction systems. Advanced Engineering Materials, 4(7), 427-436.
Di Ilio, G., Di Giorgio, P., Tribioli, L., Bella, G., & Jannelli, E. (2021). Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics. Energy Conversion
and Management, 243, 114423.
Monreal-Perez, P., Elduque, D., López, D., Sola, I., Yaben, J., & Clavería, I. (2022). Full-scale dynamometer tests of composite railway brake shoes including latxa sheep wool fibers. Journal of
Cleaner Production, 379, 134533.
Jacko, M. G., Tsang, P. H. S., & Rhee, S. K. (1984). Automotive friction materials evolution during the past decade. Wear, 100(1-3), 503-515.
Nayak, A. K., Ganguli, B., & Ajayan, P. M. (2023). Advances in electric two-wheeler technologies. Energy Reports, 9, 3508-3530.
Gadow, R., & Jiménez, M. (2019). Carbon fiber-reinforced carbon composites for aircraft brakes. American Ceramic Society Bulletin, 98(6), 28-34.
David, J., Brom, P., Starý, F., Bradáč, J., & Dynybyl, V. (2021). Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control. Sustainability, 13(8), 4572.
Krenkel, W. (2004). Carbon Fiber Reinforced CMC for High Performance Structures. International Journal of Applied Ceramic Technology, 1(2), 188-200.
Oliveira, J. P., Santos, T. G., & Miranda, R. M. (2020). Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Progress in Materials Science, 107,
Rehman, A., Das, S., & Dixit, G. (2012). Analysis of stir die cast Al–SiC composite brake drums based on coefficient of friction. Tribology International, 51, 36-41.
Moore, T. C., & Lovins, A. B. (1995). Vehicle Design Strategies to Meet and Exceed PNGV Goals. SAE Transactions, 2676-2718.
Akhtar, K., Khan, S. A., Khan, S. B., & Asiri, A. M. (2018). Scanning electron microscopy: Principle and applications in nanomaterials characterization (pp. 113-145). Springer International Publishing.
Cik, R. C. H., Foo, C. T., & Nor, A. F. O. (2015). Field Emission Scanning Electron Microscope (FESEM) facility in bti.
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning Electron Microscopy and X-Ray Microanalysis. Springer.
Guru, P. R., Khan, F., Panigrahi, S. K., & Ram, G. J. (2015). Enhancing strength, ductility and machinability of a Al–Si cast alloy by friction stir processing. Journal of manufacturing processes, 18,
-74.
Dipankar, D. E. Y., Bhowmik, A., & Biswas, A. (2021). Influence of TiB2 addition on friction and wear behaviour of Al2024-TiB2 ex-situ composites. Transactions of Nonferrous Metals Society of
China, 31(5), 1249-1261.
Pujari, S., & Srikiran, S. (2019). Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Defence Technology, 15(3), 295-299.
Igarashi, S., Bentur, A., & Mindess, S. (1996). Microhardness testing of cementitious materials. Advanced Cement Based Materials, 4(2), 48-57.
Ishola, M., Oladimeji, O., & Paul, K. (2017). Development of Ecofriendly Automobile Brake Pad Using Different Grade Sizes of Palm Kernel Shell Powder. Current Journal of Applied Science and
Technology, 23(2), 1-14.
Suthar, J., & Patel, K. M. (2018). Processing issues, machining, and applications of aluminum metal matrix composites. Materials and Manufacturing Processes, 33(5), 499-527.
Vdovin, A., & Le Gigan, G. (2020). Aerodynamic and Thermal Modelling of Disc Brakes—challenges and limitations. Energies, 13(1), 203.
Natarajan, H. K. (2018). Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application. The International Journal of Advanced Manufacturing Technology,
(1), 1461-1475.
Saindane, U. V., Soni, S., & Menghani, J. V. (2021). Dry sliding behavior of carbon-based brake pad materials. International Journal of Engineering, 34(11), 2517-2524.
Alnaqi, A. A., Barton, D. C., & Brooks, P. C. (2015). Reduced scale thermal characterization of automotive disc brake. Applied Thermal Engineering, 75, 658-668.
Cho, K. H., Cho, M. H., Kim, S. J., & Jang, H. (2008). Tribological Properties of Potassium Titanate in the Brake Friction Material; morphological effects. Tribology Letters, 32, 59-66.
Patnaik, A., Kumar, M., Satapathy, B. K., & Tomar, B. S. (2010). Performance sensitivity of hybrid phenolic composites in friction braking: effect of ceramic and aramid fibre combination. Wear, 269(11-12), 891-899.
Jamie, D. M. (2002). Using Computer Simulation Methods to Teach Statistics: A Review of the Literature. Journal of Statistics Education, 10(1).
Stojanović, B., Babić, M., Veličković, S., & Blagojević, J. (2016). Tribological Behavior of Aluminum Hybrid Composites Studied by Application of Factorial Techniques. Tribology Transactions, 59(3), 522-529.
Cagle, R. (2019). Frequency Inspection of Brake System Components (No. 2019-01-2117). SAE Technical Paper.
Gogolinskii, K. V., Syasko, V. A., Umanskii, A. S., Nikazov, A. A., & Bobkova, T. I. (2019, November). Mechanical properties measurements with portable hardness testers: advantages, limitations, prospects. In Journal of Physics: Conference Series(Vol. 1384, No. 1, p. 012012). IOP Publishing.
Holmberg, K., Ronkainen, H., Laukkanen, A., & Wallin, K. (2007). Friction and wear of coated surfaces—scales, modelling and simulation of tri biomechanisms. Surface and Coatings Technology,
(4-7), 1034-1049.
Ahmed, K. A., Mohideen, S. H. R., Balaji, M. A. S., & Sethupathy, P. B. (2022). Synergic effect of metallic fillers as heat dissipaters in the tribological performance of a nonasbestos disk brake pad.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 236(2), 292-301.
Turgut, P., & Yesilata, B. (2008). Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy and Buildings, 40(5), 679-688.
Chen, Q., Xu, J., & Chen, H. (2012). A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source. Applied Energy, 98, 562-573.
Mondal, S., Padmakumar, G. P., Sharma, V., Singh, D. N., & Baghini, M. S. (2016). A methodology to determine thermal conductivity of soils from flux measurement. Geomechanics and
Geoengineering, 11(1), 73-85.
Jafari, R., Almqvist, H., Axelsson, H., Ignatushchenko, M., Lundbäck, T., Nordlund, P., & Molina, D. M. (2014). The cellular thermal shift assay for evaluating drug target interactions in cells. Nature protocols, 9(9), 2100-2122.
Etman, M. K. (2009). Confocal Examination of Subsurface Cracking in Ceramic Materials. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 18(7), 550-559.
Surendra, M., Falcone, G., & Teodoriu, C. (2009). Investigation of swirl flows applied to the oil and gas industry. SPE Projects, Facilities & Construction, 4(01), 1-6.
Bellazzi, R., & Zupan, B. (2008). Predictive data mining in clinical medicine: current issues and guidelines. International journal of medical informatics, 77(2), 81-97.
Gramatica, P., Chirico, N., Papa, E., Cassani, S., & Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 24(34), 2121-2132
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Fouzia Gillani, Umer Ijaz, Muhammad Fraz Anwar, Muhammad Saad Sharif, Ali Iqbal, Rana Hassan Ali (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.