Cutting through the noise: A Three-Way Comparison of Median, Adaptive Median, and Non-Local Means Filter for MRI Images
DOI:
https://doi.org/10.33317/ssurj.600Abstract
Medical Imaging is an essential practice in radiology to create high-standard images of the human brain. In medical imaging, denoising techniques are essential during image processing for a meaningful view of the anatomical structure of the images. In order to overcome the denoising issues, various filtering techniques and smoothening algorithms have come forth to get an accurate image for better diagnosis while preserving the original image quality. This work utilizes three computational methods for filtering noise that could distort the factual information in MRI images. The input used as the data throughout this study are MR images in grayscale contaminated with Salt and pepper noise, the most common noise in MRI images. To de-noise, a comparative analysis of three specific filters, namely the Non-Local Means filter, Median filter, and Adaptive Median filter, is conducted to do a study that gives the best results among them at different noise densities. Peak Signal-To-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are utilized as the main components to examine the behavior of the suggested filters in this study. The results show that at every value of noise density, i.e., 0.1, 0.3, 0.6, the adaptive median filter gives the highest average PSNR of 42.04, 34.36, and 28.10 and average SSIM of 0.97, 0.95, and 0.91, respectively. Hence, it indicates that the adaptive median filter outperforms the other two filters regarding PSNR and SSIM.
References
Fan, L., Zhang, F., Fan, H., & Zhang, C. (2019). Brief review of image denoising techniques. Visual Computing for Industry, Biomedicine, and Art, 2, 1-12. DOI: https://doi.org/10.1186/s42492-019-0016-7
Vincmazet.github. (2023). Denoising: Basics of Image Processing. Retrieved from: https://vincmazet.github.io/bip/restoration/denoising.html.
Rajeesh, J., Moni, R. S., Palanikumar, S., & Gopalakrishnan, T. (2010). Noise reduction in magnetic resonance images using wave atom shrinkage. International Journal of Image Processing (IJIP), 4(2), 131-141.
Zhang, M., & Gunturk, B. K. (2008). Multiresolution bilateral filtering for image denoising. IEEE Transactions on image processing, 17(12), 2324-2333. DOI: https://doi.org/10.1109/TIP.2008.2006658
Phophalia, A., Rajwade, A., & Mitra, S. K. (2014). Rough set based image denoising for brain MR images. Signal Processing, 103, 24-35. DOI: https://doi.org/10.1016/j.sigpro.2014.01.029
Isa, I. S., Sulaiman, S. N., Mustapha, M., & Darus, S. (2015). Evaluating denoising performances of fundamental filters for T2-weighted MRI images. Procedia Computer Science, 60, 760-768. DOI: https://doi.org/10.1016/j.procs.2015.08.231
Ali, H. M. (2018). MRI medical image denoising by fundamental filters. High-Resolution Neuroimaging-Basic Physical Principles and Clinical Applications, 14, 111-124. DOI: https://doi.org/10.5772/intechopen.72427
Goyal, B., Agrawal, S., & Sohi, B. S. (2018). Noise issues prevailing in various types of medical images. Biomedical & Pharmacology Journal, 11(3), 1227. DOI: https://doi.org/10.13005/bpj/1484
Yu, C., & Chen, X. (2014). Remote sensing image denoising application by generalized morphological component analysis. International journal of applied earth observation and geoinformation, 33, 83-97. DOI: https://doi.org/10.1016/j.jag.2014.04.004
Landgrebe, D. A., & Malaret, E. (1986). Noise in remote-sensing systems: The effect on classification error. IEEE Transactions on Geoscience and Remote Sensing, (2), 294-300. DOI: https://doi.org/10.1109/TGRS.1986.289648
Liu, P., Huang, F., Li, G., & Liu, Z. (2011). Remote-sensing image denoising using partial differential equations and auxiliary images as priors. IEEE geoscience and remote sensing letters, 9(3), 358-362. DOI: https://doi.org/10.1109/LGRS.2011.2168598
Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on image processing, 14(10), 1479-1485. DOI: https://doi.org/10.1109/TIP.2005.852196
Liang, H., Li, N., & Zhao, S. (2021). Salt and pepper noise removal method based on a detail-aware filter. Symmetry, 13(3), 515. DOI: https://doi.org/10.3390/sym13030515
Veerakumar, T., Subudhi, B. N., Esakkirajan, S., & Pradhan, P. K. (2019). Iterative adaptive unsymmetric trimmed shock filter for high-density salt-and-pepper noise removal. Circuits, Systems, and Signal Processing, 38, 2630-2652. DOI: https://doi.org/10.1007/s00034-018-0984-4
Fu, B., Zhao, X., Song, C., Li, X., & Wang, X. (2019). A salt and pepper noise image denoising method based on the generative classification. Multimedia tools and applications, 78, 12043-12053. DOI: https://doi.org/10.1007/s11042-018-6732-8
Chen, F., Huang, M., Ma, Z., Li, Y., & Huang, Q. (2020). An iterative weighted-mean filter for removal of high-density salt-and pepper noise. Symmetry, 12(12), 1990. DOI: https://doi.org/10.3390/sym12121990
Dong, F., Chen, Y., Kong, D. X., & Yang, B. (2015). Salt and pepper noise removal based on an approximation of l0 norm. Computers & Mathematics with Applications, 70(5), 789-804. DOI: https://doi.org/10.1016/j.camwa.2015.05.026
Amiri Golilarz, N., Gao, H., Kumar, R., Ali, L., Fu, Y., & Li, C. (2020). Adaptive wavelet based MRI brain image de-noising. Frontiers in neuroscience, 14, 728. DOI: https://doi.org/10.3389/fnins.2020.00728
Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE transactions on medical imaging, 27(4), 425-441. DOI: https://doi.org/10.1109/TMI.2007.906087
He, L., & Greenshields, I. R. (2008). A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE transactions on medical imaging, 28(2), 165-172. DOI: https://doi.org/10.1109/TMI.2008.927338
Elhoseny, M., & Shankar, K. (2019). Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement, 143, 125-135. DOI: https://doi.org/10.1016/j.measurement.2019.04.072
Wang, M., Zheng, S., Li, X., & Qin, X. (2014, April). A new image denoising method based on Gaussian filter. In 2014 International Conference on information science, electronics and electrical engineering (Vol. 1, pp. 163-167). IEEE. DOI: https://doi.org/10.1109/InfoSEEE.2014.6948089
Vierheller, J. (2014). Exploratory data analysis. Process Design for Natural Scientists: An Agile Model-Driven Approach, 110-126. DOI: https://doi.org/10.1007/978-3-662-45006-2_9
de Zeeuw, P. M. (2007). The multigrid image transform. In Image Processing Based on Partial Differential Equations: Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, August 8–12, 2005 (pp. 309-324). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-540-33267-1_17
Hwang, H., & Haddad, R. A. (1995). Adaptive median filters: new algorithms and results. IEEE Transactions on image processing, 4(4), 499-502. DOI: https://doi.org/10.1109/83.370679
Turkhade, P., & Hore, U. W. (2016). Analysis for image quality improvement using denoise filtering techniques. International Journal of Advanced Research in Computer Communication Engineering, 3(1), 56-58. DOI: https://doi.org/10.17148/IARJSET.2016.3111
Sarker, S., Chowdhury, S., Laha, S., & Dey, D. (2012). Use of non local means filter to denoise image corrupted by salt and pepper noise. Signal & Image Processing: An International Journal (SIPIJ), 3(2), 223-235. DOI: https://doi.org/10.5121/sipij.2012.3217
Hore, A., & Ziou, D. (2010, August). Image quality metrics: PSNR vs. SSIM. In 2010 20th international conference on pattern recognition (pp. 2366-2369). IEEE. DOI: https://doi.org/10.1109/ICPR.2010.579
Instruments, N. (2013). Peak signal-to-noise ratio as an image quality metric.
Wikipedia.org. (n.d.) Structural Similarity (SSIM) Index. Retrieved from:http://www.lps.usp.br/hae/apostila/SSIM.pdf
Datta, P. (2020). All about Structural Similarity Index (SSIM): Theory+ Code in PyTorch. Medium.
Rahayu, F. N., Reiter, U., Ebrahimi, T., Perkis, A., & Svensson, P. (2009, February). SS-SSIM and MS-SSIM for digital cinema applications. In Human Vision and Electronic Imaging XIV (Vol. 7240, pp. 212-223). SPIE. DOI: https://doi.org/10.1117/12.805805
Wikipedia.org. (n.d.) Magnetic Resonance Imaging (MRI) of the brain. Retrieved from:https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
Gaillard F. (2024). Normal Brain (MRI): Radiology Case. Retrieved from: https://radiopaedia.org/cases/normal-brain-mri-6
Chakrabarty, N. (2019). Brain MRI images for brain tumor detection. Kaggle.
Sagayam, K. M., Bruntha, P. M., Sridevi, M., Sam, M. R., Kose, U., & Deperlioglu, O. (2021). A cognitive perception on content-based image retrieval using an advanced soft computing paradigm. In Advanced machine vision paradigms for medical image analysis (pp. 189-211). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-819295-5.00007-X
Video Signal Processing. (2012). In Digital Video and HD, pp. 377–388. Retrieved from: https://doi.org/10.1016/B978-0-12-391926-7.50031-X, DOI: https://doi.org/10.1016/B978-0-12-391926-7.50031-X
Buades, A., Coll, B., & Morel, J. M. (2011). Non-local means denoising. Image Processing On Line, 1, 208-212. Retrieved from:doi: 10.5201/ipol.2011.bcm_nlm. DOI: https://doi.org/10.5201/ipol.2011.bcm_nlm
Li, Z., Yu, L., Trzasko, J. D., Lake, D. S., Blezek, D. J., Fletcher, J. G., ... & Manduca, A. (2014). Adaptive nonlocal means filtering based on local noise level for CT denoising. Medical physics, 41(1), 011908. DOI: https://doi.org/10.1118/1.4851635
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Raniya Ashraf, Roz Nisha, Fahad Shamim, Sarmad Shams (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.