Design and Validation of Water Based Dense Dielectric Patch Antenna (DDPA) for Microwave Communication around Frequency of 1GHz

Authors

  • Madiha Mukhtar Electronic Engineering Department, The Islamia University of Bahawalpur
  • Shahab Ahmad Niazi Electronic Engineering Department, The Islamia University of Bahawalpur
  • Dileep Kumar
  • Umar Fayyaz Department of Information and Communication Engineering, the Islamia university of Bahawalpur
  • Abid Munir Electronic engineering department, the Islamia University of Bahaawlpur

DOI:

https://doi.org/10.33317/ssurj.592

Keywords:

reconfigurable antennas, DDPA, Coaxial feeds, CST microwave studio, ANSYS FHSS

Abstract

Liquid antennas are distinct types of antennas that have been widely used due to their low profile, reconfigurable, and tunable features with steering abilities. In this paper, a low profile, high directivity, and good efficiency reconfigurable Water-Dense Dielectric Patch Antenna (DDPA) fed by the coaxial probe is presented. Distilled water becomes lossy above 1 GHZ frequency, so it is best suitable for lower-frequency applications. A thick substrate between the water patch and the ground plane is used. An impedance bandwidth of 7% with a maximum gain of 7.78 dBi, and radiation efficiency up to 71 % is obtained. This antenna can operate over the 967 to 1038 MHz band without a reduction in radiation efficiency. Simulated results are presented to validate the new design in both CST microwave studio and ANSYS HFSS which are the best simulating software for antenna designing. The comparison shows that the new antenna has a more compact size, and simpler structure, and is suitable for low-frequency applications.

References

Kosta, Y., & Kosta, S. (2004, June). Liquid antenna systems. In IEEE Antennas and Propagation Society Symposium, 2004. (Vol. 3, pp. 2392-2395). IEEE. DOI: https://doi.org/10.1109/APS.2004.1331854

Hayes, G. J., So, J. H., Qusba, A., Dickey, M. D., & Lazzi, G. (2012). Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE transactions on Antennas and Propagation, 60(5), 2151-2156. DOI: https://doi.org/10.1109/TAP.2012.2189698

Karabey, O. H., Bildik, S., Bausch, S., Strunck, S., Gaebler, A., & Jakoby, R. (2012). Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines. IEEE Transactions on Antennas and Propagation, 61(1), 70-76. DOI: https://doi.org/10.1109/TAP.2012.2213232

Alja'afreh, S. S., Huang, Y., & Xing, L. (2013, November). A compact dual-feed water-based diversity antenna. In 2013 Loughborough Antennas & Propagation Conference (LAPC) (pp. 182-185). IEEE. DOI: https://doi.org/10.1109/LAPC.2013.6711878

Kosta, Y., & Kosta, S. (2008, December). Realization of a microstrip-aperture-coupled-passive-liquid patch antenna. In 2008 IEEE International RF and Microwave Conference (pp. 135-138). IEEE. DOI: https://doi.org/10.1109/RFM.2008.4897409

Hua, C., Shen, Z., & Lu, J. (2014). High-efficiency sea-water monopole antenna for maritime wireless communications. IEEE Transactions on antennas and propagation, 62(12), 5968-5973.

Paraschakis, E., Fayad, H., & Record, P. (2005, March). Ionic liquid antenna. In IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005. (pp. 552-554). IEEE.

Xing, L., Huang, Y., Xu, Q., Alja'afreh, S., & Liu, T. (2015). A broadband hybrid water antenna for hand-portable applications. IEEE Antennas and Wireless Propagation Letters, 15, 174-177. DOI: https://doi.org/10.1109/LAWP.2015.2436692

Lai, H. W., Luk, K. M., & Leung, K. W. (2013). Dense dielectric patch antenna—A new kind of low-profile antenna element for wireless communications. IEEE transactions on antennas and propagation, 61(8), 4239-4245.

Kosta, Y. P. (1999, July). Mercury patch microwave antenna. In Space Applications Centre (ISRO), Proceedings of the International Conference on Smart Materials, Structures and Systems (pp. 701-706).

Paracha, K. N., Butt, A. D., Alghamdi, A. S., Babale, S. A., & Soh, P. J. (2019). Liquid metal antennas: Materials, fabrication and applications. Sensors, 20(1), 177. DOI: https://doi.org/10.3390/s20010177

Kingsley, S. P., & O'Keefe, S. G. (1999). Beam steering and monopulse processing of probe-fed dielectric resonator antennas. IEE Proceedings-Radar, Sonar and Navigation, 146(3), 121-125. DOI: https://doi.org/10.1049/ip-rsn:19990307

Huang, Y., Xing, L., Song, C., Wang, S., & Elhouni, F. (2021). Liquid antennas: Past, present and future. IEEE Open Journal of Antennas and Propagation, 2, 473-487. DOI: https://doi.org/10.1109/OJAP.2021.3069325

Li, M., Yu, B., & Behdad, N. (2010). Liquid-tunable frequency selective surfaces. IEEE Microwave and wireless components letters, 20(8), 423-425. DOI: https://doi.org/10.1109/LMWC.2010.2049257

Fan, R. G., Qian, Y. H., & Chu, Q. X. (2017). Frequency and pattern reconfigurable saline‐water antenna array. Microwave and Optical Technology Letters, 59(9), 2284-2289. DOI: https://doi.org/10.1002/mop.30723

Hua, C., Shen, Z., & Lu, J. (2014). High-efficiency sea-water monopole antenna for maritime wireless communications. IEEE Transactions on antennas and propagation, 62(12), 5968-5973. DOI: https://doi.org/10.1109/TAP.2014.2360210

Wang, M., & Chu, Q. X. (2019). A wideband polarization-reconfigurable water dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 18(2), 402-406. DOI: https://doi.org/10.1109/LAWP.2019.2892503

Sayem, A. S. M., Simorangkir, R. B., Esselle, K. P., Hashmi, R. M., & Liu, H. (2020). A method to develop flexible robust optically transparent unidirectional antennas utilizing pure water, PDMS, and transparent conductive mesh. IEEE Transactions on Antennas and Propagation, 68(10), 6943-6952. DOI: https://doi.org/10.1109/TAP.2020.2996816

Karthika, K., & Kavitha, K. (2021). Reconfigurable antennas for advanced wireless communications: A review. Wireless Personal Communications, 120(4), 2711-2771. DOI: https://doi.org/10.1007/s11277-021-08555-4

Lai, H. W., Luk, K. M., & Leung, K. W. (2013). Dense dielectric patch antenna—A new kind of low-profile antenna element for wireless communications. IEEE transactions on antennas and propagation, 61(8), 4239-4245. DOI: https://doi.org/10.1109/TAP.2013.2260122

Downloads

Published

2023-12-29

How to Cite

Mukhtar, M., Niazi, S. A., Kumar, D., Fayyaz, U., & Munir, A. (2023). Design and Validation of Water Based Dense Dielectric Patch Antenna (DDPA) for Microwave Communication around Frequency of 1GHz. Sir Syed University Research Journal of Engineering & Technology, 13(2), 91–96. https://doi.org/10.33317/ssurj.592