A Novel Approach to Android Malware Intrusion Detection Using Zero-Shot Learning GANs

Authors

  • Syed Atir Raza Shirazi Minhaj University
  • Mehwish Shaikh

DOI:

https://doi.org/10.33317/ssurj.584

Keywords:

Zero Shot Learning, Intrusion Detection, Attacks, Malware, Generative adversarial networks

Abstract

This study proposes an innovative intrusion detection system for Android malware based on a zero-shot learning GAN approach. Our system achieved an accuracy of 99.99%, indicating that this approach can be highly effective for identifying intrusion events. The proposed approach is particularly valuable for analyzing complex datasets such as those involving Android malware. The results of this study demonstrate the potential of this method for improving the accuracy and efficiency of intrusion detection systems in real-world scenarios. Future work could involve exploring alternative feature selection techniques and evaluating the performance of other machine learning classifiers on larger datasets to further enhance the accuracy of intrusion detection systems. The study highlights the importance of adopting advanced machine learning techniques such as zero-shot learning GANs to enhance the effectiveness of intrusion detection systems in cybersecurity. The proposed system presents a significant contribution to the field of intrusion detection, providing an effective solution for detecting malicious activities in Android malware, which can improve the security of mobile devices.

References

Wilding, R., Baldassar, L., Gamage, S., Worrell, S., & Mohamud,S. (2020). Digital media and the affective economies of

transnational families. International Journal of Cultural Studies,23(5), 639-655.

Wang, D., Xiang, Z., & Fesenmaier, D. R. (2016). Smartphone use in everyday life and travel. Journal of travel research, 55(1), 52-63. DOI: https://doi.org/10.1177/0047287514535847

Delgado-Santos, P., Stragapede, G., Tolosana, R., Guest, R., Deravi, F., & Vera-Rodriguez, R. (2022). A survey of privacy

vulnerabilities of mobile device sensors. ACM Computing Surveys (CSUR), 54(11s), 1-30.

Schneider, M., Chowdhury, M. M., & Latif, S. (2022). Mobile Devices Vulnerabilities. EPiC Series in Computing, 82, 92-101. DOI: https://doi.org/10.29007/kg5j

Sharma, B., & Vaid, R. (2022). A comprehensive study on vulnerabilities and attacks in multicast routing over mobile ad hoc DOI: https://doi.org/10.1007/978-981-16-3961-6_22

network. In Cyber Security and Digital Forensics: Proceedings of ICCSDF 2021 (pp. 253-264). Springer Singapore.

Singh, D., Karpa, S., & Chawla, I. (2022). “Emerging Trends in Computational Intelligence to Solve Real-World Problems”

Android Malware Detection Using Machine Learning. In International Conference on Innovative Computing and

Communications: Proceedings of ICICC 2021, Volume 3 (pp. 329- 341). Springer Singapore.

Wang, L., Wang, H., He, R., Tao, R., Meng, G., Luo, X., & Liu, X. (2022). MalRadar: Demystifying android malware in the new era. DOI: https://doi.org/10.1145/3489048.3530973

Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6(2), 1-27.

Tufail, M., & Hamdani, F. K. (2023). A Novel Android Application Permission Model with Risk Assess-Allow & Reassess-Revoke

Approach: Assess-Allow & Reassess-Revoke (AARR) Android App-permission Model. International Journal of Information

Systems and Computer Technologies, 2(1).

Cinar, A. C., & Kara, T. B. (2023). The current state and future of mobile security in the light of the recent mobile security threat DOI: https://doi.org/10.1007/s11042-023-14400-6

reports. Multimedia Tools and Applications, 1-13.

Muzaffar, A., Hassen, H. R., Lones, M. A., & Zantout, H. (2022). An in-depth review of machine learning based android malware DOI: https://doi.org/10.1016/j.cose.2022.102833

detection. Computers & Security, 102833.

Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020, August). Dynamic android malware

category classification using semi-supervised deep learning. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science

and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 515-522). IEEE.

Awais, M., Tariq, M. A., Iqbal, J., & Masood, Y. (2023, February). Anti-Ant Framework for Android Malware Detection and

Prevention Using Supervised Learning. In 2023 4th International Conference on Advancements in Computational Sciences (ICACS)

(pp. 1-5). IEEE.

Kumar, S., Janet, B., & Neelakantan, S. (2022). Identification of malware families using stacking of textural features and machine DOI: https://doi.org/10.1016/j.eswa.2022.118073

learning. Expert Systems with Applications, 208, 118073.

Xu, J., Fu, W., Bu, H., Wang, Z., & Ying, L. (2022). SeqNet: An efficient neural network for automatic malware detection. arXiv

preprint arXiv:2205.03850.

Ghillani, D., & Gillani, D. H. (2022). A perspective study on Malware detection and protection, A review. Authorea Preprints. DOI: https://doi.org/10.22541/au.166308976.63086986/v1

Singh, G., & Khare, N. (2022). A survey of intrusion detection from the perspective of intrusion datasets and machine learning DOI: https://doi.org/10.1080/1206212X.2021.1885150

techniques. International Journal of Computers and Applications, 44(7), 659-669.

Raza, S. A., Shamim, S., Khan, A. H., & Anwar, A. (2023). Intrusion detection using decision tree classifier with feature

reduction technique. Mehran University Research Journal Of Engineering & Technology, 42(2), 30-37.

Shatnawi, A. S., Yassen, Q., & Yateem, A. (2022). An android malware detection approach based on static feature analysis using DOI: https://doi.org/10.1016/j.procs.2022.03.086

machine learning algorithms. Procedia Computer Science, 201, 653-658.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2022). A hybrid feature selection approach-based Android malware detection

framework using machine learning techniques. In Cyber Security, Privacy and Networking: Proceedings of ICSPN 2021 (pp. 347-

. Singapore: Springer Nature Singapore.

Schmitt, M. (2023). Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial Intelligence DOI: https://doi.org/10.2139/ssrn.4397870

(AI)-enabled malware and intrusion detection. Journal of Industrial Information Integration, 100520.

Mahindru, A., & Sangal, A. L. (2022). SOMDROID: Android malware detection by artificial neural network trained using

unsupervised learning. Evolutionary Intelligence, 15(1), 407-437.

Hindarto, D., & Santoso, H. (2022). Performance Comparison of Supervised Learning Using Non-Neural Network and Neural DOI: https://doi.org/10.23887/janapati.v11i1.40768

Network. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 11(1), 49-62.

Yilmaz, A. B., Taspinar, Y. S., & Koklu, M. (2022). Classification of Malicious Android Applications Using Naive Bayes and Support

Vector Machine Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 269-274.

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., & Pham, T. D. (2022). EfficientNet convolutional neural networks-based Android DOI: https://doi.org/10.1016/j.cose.2022.102622

malware detection. Computers & Security, 115, 102622.

Zhang, G., Li, Y., Bao, X., Chakarborty, C., Rodrigues, J. J., Zheng, L., ... & Khosravi, M. R. (2023). TSDroid: A Novel Android

Malware Detection Framework Based on Temporal & Spatial Metrics in IoMT. ACM Transactions on Sensor Networks, 19(3), 1-23. DOI: https://doi.org/10.1145/3532091

Zuhair, H. (2022). A panoramic evaluation of machine learning and deep learning-aided ransomware detection tools using a hybrid DOI: https://doi.org/10.1007/978-981-16-5559-3_32

cluster of rich smartphone traits. In Advances on Smart and Soft Computing: Proceedings of ICACIn 2021 (pp. 387-408). Springer

Singapore..

Şahın, D. Ö., Akleylek, S., & Kiliç, E. (2022). LinRegDroid: Detection of Android malware using multiple linear regression DOI: https://doi.org/10.1109/ACCESS.2022.3146363

models-based classifiers. IEEE Access, 10, 14246-14259.

Mahdavifar, S., Alhadidi, D., & Ghorbani, A. A. (2022). Effective and efficient hybrid android malware classification using pseudo- DOI: https://doi.org/10.1007/s10922-021-09634-4

label stacked auto-encoder. Journal of network and systems management, 30, 1-34.

Firoz, N., Firoz, A. B., & Tahsin, M. S. (2023). Comprehensive Analysis of Android Malware detection through Semi-supervised Autoencoder models. DOI: https://doi.org/10.21203/rs.3.rs-2780527/v1

Ding, Y., Zhang, X., Li, B., Xing, J., Qiang, Q., Qi, Z., ... & Wang, H. (2022, August). Malware Classification Based on Semi-

Supervised Learning. In International Conference on Science of Syed Atir Raza Shirazi et al, 48 Cyber Security (pp. 287-301). Cham: Springer International Publishing.

Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., ... & Wu, Q. J. (2022). A review of generalized zero-shot learning DOI: https://doi.org/10.1109/TPAMI.2022.3191696

methods. IEEE transactions on pattern analysis and machine intelligence.

Chen, S., Hong, Z., Xie, G. S., Yang, W., Peng, Q., Wang, K., ... & You, X. (2022). Msdn: Mutually semantic distillation network for DOI: https://doi.org/10.1109/CVPR52688.2022.00746

zero-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7612-7621).

Barros, P. H., Chagas, E. T., Oliveira, L. B., Queiroz, F., & Ramos, H. S. (2022). Malware‐SMELL: A zero‐shot learning strategy for

detecting zero‐day vulnerabilities. Computers & Security, 120, 102785.

Li, D., Gu, C., & Zhu, Y. (2022). Gene fingerprinting: Cracking encrypted tunnel with zero-shot learning. IEICE TRANSACTIONS DOI: https://doi.org/10.1587/transinf.2021EDP7179

on Information and Systems, 105(6), 1172-1184.

Ramazi, S., & Shabani, S. (2022, November). Averting Mode Collapse for Generative Zero-Shot Learning. In 2022 12th DOI: https://doi.org/10.1109/ICCKE57176.2022.9960072

International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 387-391). IEEE.

Cao, W., Wu, Y., Sun, Y., Zhang, H., Ren, J., Gu, D., & Wang, X. (2023). A review on multimodal zero‐shot learning. Wiley DOI: https://doi.org/10.1002/widm.1488

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1488.

Gowda, S. N. (2023). Synthetic Sample Selection for Generalized Zero-Shot Learning. In Proceedings of the IEEE/CVF Conference DOI: https://doi.org/10.1109/CVPRW59228.2023.00011

on Computer Vision and Pattern Recognition (pp. 58-67).

Lin, Z., Shi, Y., & Xue, Z. (2022, May). Idsgan: Generative adversarial networks for attack generation against intrusion DOI: https://doi.org/10.1007/978-3-031-05981-0_7

detection. In Pacific-asia conference on knowledge discovery and data mining (pp. 79-91). Cham: Springer International Publishing.

Ding, H., Chen, L., Dong, L., Fu, Z., & Cui, X. (2022). Imbalanced

data classification: A KNN and generative adversarial networks- based hybrid approach for intrusion detection. Future Generation

Computer Systems, 131, 240-254.

Idrissi, I., Azizi, M., & Moussaoui, O. (2022). An unsupervised

generative adversarial network based-host intrusion detection system for internet of things devices. Indones. J. Electr. Eng. Comput. Sci, 25(2), 1140-1150 DOI: https://doi.org/10.11591/ijeecs.v25.i2.pp1140-1150

Downloads

Published

2023-12-29

How to Cite

Shirazi, S. A. R., & Shaikh, M. (2023). A Novel Approach to Android Malware Intrusion Detection Using Zero-Shot Learning GANs. Sir Syed University Research Journal of Engineering & Technology, 13(2), 43–48. https://doi.org/10.33317/ssurj.584