Prototype Development for Solar Energy Tracking Based on Arduino in QUEST Campus Larkana

Authors

  • Abdul Hameed soomro Quai-e-Awam University Nawabshah Campus Larkano
  • SanaUllah Talani
  • Talha Soomro
  • Faraz Ali Khushk
  • Ahmer Ali Bhatti

DOI:

https://doi.org/10.33317/ssurj.579

Keywords:

Arduino, Light Sensor, Solar Energy, Servo Motor, Solar Tracker.

Abstract

The utilization of solar energy has become increasingly popular due to its renewable and sustainable nature. However, one of the primary challenges in solar energy harvesting is the optimization of the amount of energy that can be captured from the sun. The implementation of solar trackers is an effective solution that enables the automatic adjustment of the solar panel's position to face the sun throughout the day. In this project, an Arduino-based solar tracker prototype was designed and implemented to optimize the solar energy harvesting process. The system employs Light-Dependent Resistors (LDRs) to detect sunlight intensity and a servo motor to adjust the position of the solar panel accordingly. The system was programmed using the Arduino programming language and was tested using a small-scale solar panel. The increasing demand for cost-effective and easy-to-install renewable energy systems has led to a growing interest in photovoltaic solar energy for residential use. To optimize energy production, a two-axis photovoltaic solar tracker that orients the solar panel toward the maximum solar radiation is proposed in this study. The use of Free Computer Aided Design (CAD) 0.15 for the prototype's design, combined with Arduino technology, provides an affordable solution for mounting the solar tracker on flat roofs and other horizontal building elements. The performance of the solar tracker was evaluated under various testing conditions, showcasing an enhanced level of accuracy and energy production when compared to traditional fixed systems. The prototype's successful demonstration represents a significant advancement in the field, providing a practical solution for small-scale and residential solar energy applications. This research prototype was developed and installed on the roof of the Electrical department of QUEST, Campus Larkana, and validated through simulation results.

References

Rao, C. K., Patel, R., Sahu, L. K., Gupta, K. K., & Barwar, M. K. (2023). Maximum power point tracking controller implementation in multiple input converter for effective solar energy harvesting using maximum power point resistance method. International Journal of Circuit Theory and Applications, 51(1), 302-321. DOI: https://doi.org/10.1002/cta.3428

Gora, O., & Akkan, T. (2023). Development of a Novel Spherical Light-Based Positioning Sensor in Solar Tracking. Sensors, 23(8), 3838. DOI: https://doi.org/10.3390/s23083838

Hadroug, N., Iratni, A., Hafaifa, A., Boudjemline, A., Alshammari, O. S., Jerbi, H., ... & Chen, X. (2023). Energy Efficiency Improvement in Photovoltaic Installation Using a Twin-Axis Solar Tracking Mechanism with LDR Sensors Compared with Neuro- Fuzzy Adaptive Inference Structure. Journal of Electrical DOI: https://doi.org/10.1007/s42835-023-01411-4

Engineering & Technology, 1-25.

Senthilkumar, S., Mohan, V., Deepa, R., Nuthal Srinivasan, M., Kumar, T. S., Thanikanti, S. B., & Prathap, N. (2023). A Review on MPPT Algorithms for Solar PV Systems. International Journal of Research-GRANTHAALAYAH, 11(3), 25-64. DOI: https://doi.org/10.29121/granthaalayah.v11.i3.2023.5086

Kumar, G. A., & Shivashankar. (2022). Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system. International Journal of Energy and Environmental Engineering, 13(1), 77-103. DOI: https://doi.org/10.1007/s40095-021-00399-9

Mendecka, B., Di Ilio, G., Krastev, V. K., & Bella, G. (2022). Evaluating the potential of phase-change induced volumetric expansion in thermal energy storage media for passive solar tracking in high-temperature solar energy systems. Applied Thermal Engineering, 212, 118561. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118561

Nagaraja Rao, S., Anisetty, S. K., Manjunatha, B. M., Kiran Kumar, B. M., Praveen Kumar, V., & Pranupa, S. (2022). Interleaved high- gain boost converter powered by solar energy using hybrid-based MPP tracking technique. Clean Energy, 6(3), 460-475. DOI: https://doi.org/10.1093/ce/zkac026

GÜRGENÇ, E., DİKİCİ, A., & ASLAN, F. (2022). Production and Characterization of AlNiOZnOp-SiAl Composite Photodiodes for Solar Energy Tracking Systems. Turkish Journal of Science and Technology, 17(1), 109-119. DOI: https://doi.org/10.55525/tjst.1071332

Alhadri, M., Alatawi, I., Alshammari, F., Haleem, M. A., Heniegal, A. M. A., Abdelaziz, G. B., ... & Elashmawy, M. (2022). Design of a low-cost parabolic concentrator solar tracking system: Tubular DOI: https://doi.org/10.1115/1.4054232

solar still application. Journal of Solar Energy Engineering, 144(5), 051006.

Praveenkumar, S., Gulakhmadov, A., Kumar, A., Safaraliev, M., & Chen, X. (2022). Comparative Analysis for a Solar Tracking Mechanism of Solar PV in Five Different Climatic Locations in South Indian States: A Techno-Economic Feasibility. Sustainability, 14(19), 11880. DOI: https://doi.org/10.3390/su141911880

Wu, C. H., Wang, H. C., & Chang, H. Y. (2022). Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development, 66, 308-318. DOI: https://doi.org/10.1016/j.esd.2021.12.013

Jensen, A. R., Sifnaios, I., Furbo, S., & Dragsted, J. (2022). Self- shading of two-axis tracking solar collectors: Impact of field layout, latitude, and aperture shape. Solar Energy, 236, 215-224. DOI: https://doi.org/10.1016/j.solener.2022.02.023

Fuentes-Morales, R. F., Diaz-Ponce, A., Peña-Cruz, M. I., Rodrigo, P. M., Valentín-Coronado, L. M., Martell-Chavez, F., & Pineda- Arellano, C. A. (2020). Control algorithms applied to active solar tracking systems: A review. Solar Energy, 212, 203-219. DOI: https://doi.org/10.1016/j.solener.2020.10.071

Soomro, A. H., Larik, A. S., Mahar, M. A., & Sahito, A. A. (2022). Simulation-based comparison of PID with sliding mode controller for matrix-converter-based dynamic voltage restorer under variation of system parameters to alleviate the voltage sag in distribution system. Sustainability, 14(21), 14661. DOI: https://doi.org/10.3390/su142114661

Batayneh, W., Bataineh, A., Soliman, I., & Hafees, S. A. (2019). Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction, 98, 102-109. DOI: https://doi.org/10.1016/j.autcon.2018.11.011

Wu, M., Shi, Z., Xiao, T., & Ang, H. (2019). Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar- powered UAV. Aerospace Science and Technology, 91, 1-11. DOI: https://doi.org/10.1016/j.ast.2019.05.013

Boutasseta, N., Bouakkaz, M. S., Fergani, N., Attoui, I., Bouraiou, A., & Neçaibia, A. (2021). Solar energy conversion systems optimization using novel jellyfish based maximum power tracking strategy. Procedia Computer Science, 194, 80-88. DOI: https://doi.org/10.1016/j.procs.2021.10.061

Mohamad, A., Mhamdi, H., Amin, N. A. M., Izham, M., Aziz, N. A., & Chionh, S. Y. (2021, October). A review of automatic solartracking systems. In Journal of Physics: Conference Series (Vol. 2051, No. 1, p. 012010). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/2051/1/012010

Awasthi, A., Shukla, A. K., SR, M. M., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392-405. DOI: https://doi.org/10.1016/j.egyr.2020.02.004

Rad, M. A. V., Toopshekan, A., Rahdan, P., Kasaeian, A., & Mahian, O. (2020). A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations. Renewable and Sustainable Energy Reviews, 129, 109923. DOI: https://doi.org/10.1016/j.rser.2020.109923

Racharla, S., & Rajan, K. (2017). Solar tracking system–a review. International journal of sustainable engineering, 10(2), 72-81.

Gupta, A., Chauhan, Y. K., & Pachauri, R. K. (2016). A comparative investigation of maximum power point tracking methods for solar PV system. Solar Energy, 136, 236-253. DOI: https://doi.org/10.1016/j.solener.2016.07.001

Abdollahpour, M., Golzarian, M. R., Rohani, A., & Zarchi, H. A. (2018). Development of a machine vision dual-axis solar tracking system. Solar Energy, 169, 136-143. DOI: https://doi.org/10.1016/j.solener.2018.03.059

Nsengiyumva, W., Chen, S. G., Hu, L., & Chen, X. (2018). Recent advancements and challenges in Solar Tracking Systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250-279. DOI: https://doi.org/10.1016/j.rser.2017.06.085

Abdullah, M. A., Yatim, A. H. M., Tan, C. W., & Saidur, R. (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, 16(5), 3220-3227. DOI: https://doi.org/10.1016/j.rser.2012.02.016

Fernández-Ahumada, L. M., Casares, F. J., Ramírez-Faz, J., & López-Luque, R. (2017). Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy, 150, 20-29. DOI: https://doi.org/10.1016/j.solener.2017.04.006

Sumathi, V., Jayapragash, R., Bakshi, A., & Akella, P. K. (2017). Solar tracking methods to maximize PV system output–A review of the methods adopted in recent decade. Renewable and Sustainable Energy Reviews, 74, 130-138. DOI: https://doi.org/10.1016/j.rser.2017.02.013

Shaikh, S. A., Shaikh, A. M., Shaikh, M. F., Jiskani, S. A., & Memon, Q. A. (2022). Technical and Economical Evaluation of Solar PV System for Domestic Load in Pakistan: An Overlook Contributor to High Tariff and Load Shedding. Sir Syed University Research Journal of Engineering & Technology, 12(1), 23-30. DOI: https://doi.org/10.33317/ssurj.313

Patra, B., Nema, P., Khan, M. Z., & Khan, O. (2023). Optimization of solar energy using MPPT techniques and industry 4.0 modelling. Sustainable Operations and Computers, 4, 22-28. DOI: https://doi.org/10.1016/j.susoc.2022.10.001

Al Hasani, I. M. M., Kazmi, S. I. A., Shah, R. A., Hasan, R., & Hussain, S. (2022). IoT based Fire Alerting Smart System. Sir Syed University Research Journal of Engineering & Technology, 12(2), 46-50 DOI: https://doi.org/10.33317/ssurj.410

Akbar, H. S., Siddiq, A. I., & Aziz, M. W. (2017). Microcontroller based dual axis sun tracking system for maximum solar energy generation. American Journal of Energy Research, 5(1), 23-27.

Tharamuttam, J. K., & Ng, A. K. (2017). Design and development of an automatic solar tracker. Energy Procedia, 143, 629-634. DOI: https://doi.org/10.1016/j.egypro.2017.12.738

Jusoh, A., Sutikno, T., Guan, T. K., & Mekhilef, S. (2014). AReview on favourable maximum power point tracking systems in solar energy application. TELKOMNIKA (Telecommunication Computing Electronics and Control), 12(1), 6-22. DOI: https://doi.org/10.12928/TELKOMNIKA.v12i1.1168

Sharma, P., & Malhotra, N. (2014, January). Solar tracking system using microcontroller. In 2014 1st International Conference on Non Conventional Energy (ICONCE 2014) (pp. 77-79). IEEE. DOI: https://doi.org/10.1109/ICONCE.2014.6808687

Stamatescu, I., Făgărăşan, I., Stamatescu, G., Arghira, N., & Iliescu, S. S. (2014). Design and implementation of a solar-trackingalgorithm. Procedia Engineering, 69, 500-507. DOI: https://doi.org/10.1016/j.proeng.2014.03.018

Khatib, T., Mohamed, A., & Sopian, K. (2012). A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews, 16(5), 2864-2869. DOI: https://doi.org/10.1016/j.rser.2012.01.064

Badamasi, Y. A. (2014, September). The working principle of an Arduino. In 2014 11th international conference on electronics, computer and computation (ICECCO) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/ICECCO.2014.6997578

Downloads

Published

2023-12-29

How to Cite

soomro, A. H., Talani, S., Soomro, T., Khushk, F. A., & Bhatti, A. A. (2023). Prototype Development for Solar Energy Tracking Based on Arduino in QUEST Campus Larkana. Sir Syed University Research Journal of Engineering & Technology, 13(2), 23–28. https://doi.org/10.33317/ssurj.579