Development and Analysis of Biomaterial Based on Calcium Sulfate Hemihydrate and Epoxy Resin

Authors

  • Sadia Arshad Salim Habib University
  • Hafsa Aijaz Salim Habib University
  • Muhammad Rizwan Salim Habib University
  • Tooba Khan Salim Habib University
  • Muhammad Zeeshan Ul Haque Salim Habib University

DOI:

https://doi.org/10.33317/ssurj.570

Keywords:

Bone deformation, Allograft, PMMA, Epoxy Resin, Calcium sulfate hemihydrate, CaSO4.1/2H2O, Orthotic, Prosthetic, Bone grafting, Hardness testing, PASCO compression tester

Abstract

Bone deformation and the degradation of the joint are one of the most common problems faced around the world, especially after the age of 50. Materials like Allograft and Polymethyl-Methacrylate (PMMA) are used in traditional orthotics and prosthetics, and for bone grafting/filling procedures, however, these materials can be expensive. This research proposes, the fabrication of a novel material by utilizing Calcium-Sulfate Hemihydrate (CaSO4. 1/2H2O), and epoxy resin, which can be used as a cost-effective orthotic and prosthetic material. The materials are already used as bone adhesives and bone grafts, hence, are compatible and non-toxic. The fabricated composite material possesses physical properties closest to the natural human bone and is also hydrophilic. Samples with different ratios of the constituents were fabricated and tested for their hardness, compression, and contact angle values using a Hardness tester, PASCO compression tester, and Image J software. The hardness test results indicate that sample 1 has the hardness value i.e., 29.5 ± 2.50 HV in contrast the hardness value of a human bone is found to be 33.3

References

Navarro, M., Michiardi, A., Castano, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. Journal of the royal society interface, 5(27), 1137-1158. DOI: https://doi.org/10.1098/rsif.2008.0151

Hench, L. L., & Thompson, I. (2010). Twenty-first century challenges for biomaterials. Journal of the Royal Society Interface, 7(suppl_4), S379-S391. DOI: https://doi.org/10.1098/rsif.2010.0151.focus

Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014-1017. DOI: https://doi.org/10.1126/science.1067404

Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., ... & Gassert, R. (2015). Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of neuroengineering and rehabilitation, 12(1), 1-30. DOI: https://doi.org/10.1186/1743-0003-12-1

Vujaklija, I., & Farina, D. (2018). 3D printed upper limb prosthetics. Expert review of medical devices, 15(7), 505-512. DOI: https://doi.org/10.1080/17434440.2018.1494568

Daher, R., Ardu, S., di Bella, E., Krejci, I., & Duc, O. (2022). Efficiency of 3D-printed composite resin restorations compared with subtractive materials: evaluation of fatigue behavior, cost, and time of production. The Journal of Prosthetic Dentistry. DOI: https://doi.org/10.1016/j.prosdent.2022.08.001

Johns Hopkins Hospital. (n.d.). Bone Grafting: What is bone grafting? Retrieved from: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/bone-grafting

Archunan, M. W., & Petronis, S. (2021). Bone Grafts in Trauma and Orthopaedics. Cureus, 13(9). DOI: https://doi.org/10.7759/cureus.17705

Kutkut, A., & Andreana, S. (2010). Medical-grade calcium sulfate hemihydrate in clinical implant dentistry: a review. Journal of long-term effects of medical implants, 20(4). DOI: https://doi.org/10.1615/JLongTermEffMedImplants.v20.i4.40

Rey, C., Combes, C., Drouet, C., & Grossin, D. (2011). Bioactive Ceramics: Physical Chemistry. Comprehensive Biomaterials, 187-221. DOI: https://doi.org/10.1016/B978-0-08-055294-1.00178-1

Rey, C., Combes, C., Drouet, C., & Grossin, D. (2017). Bioactive Ceramics: Physical Chemistry. Comprehensive Biomaterials II, 244-290. DOI: https://doi.org/10.1016/B978-0-12-803581-8.10171-7

Odgaard, A., & Linde, F. (1991). The underestimation of Young's modulus in compressive testing of cancellous bone specimens. Journal of biomechanics, 24(8), 691-698.

Gunatillake, P. A., Adhikari, R., & Gadegaard, N. (2003). Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater, 5(1), 1-16. DOI: https://doi.org/10.22203/eCM.v005a01

May, C. A. (2018). Introduction to epoxy resins. In Epoxy Resins (pp. 1-8). Routledge.[15] Elfar, J. J., Menorca, R. M. G., Reed, J. D., & Stanbury, S. (2014). Composite Bone Models in Orthopaedic Surgery Research and Education. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 22(2), 111-120. DOI: https://doi.org/10.5435/JAAOS-22-02-111

Wu, W. W., Zhu, Y. B., Chen, W., Li, S., Yin, B., Wang, J. Z., ... & Zhang, Y. Z. (2019). Bone Hardness of Different Anatomical Regions of Human Radius and its Impact on the Pullout Strength of Screws. Orthopaedic Surgery, 11(2), 270-276. DOI: https://doi.org/10.1111/os.12436

Odgaard, A., & Linde, F. (1991). The Underestimation of Young's Modulus in Compressive Testing of Cancellous Bone Specimens. Journal of Biomechanics, 24(8), 691-698. DOI: https://doi.org/10.1016/0021-9290(91)90333-I

Boyan, B. D., Lotz, E. M., & Schwartz, Z. (2017). Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Engineering Part A, 23(23-24), 1479-1489. DOI: https://doi.org/10.1089/ten.tea.2017.0048

Morgan, E. F., Unnikrisnan, G. U., & Hussein, A. I. (2018). Bone Mechanical Properties in Healthy and Diseased States. Annual Review of Biomedical Engineering, 20, 119-143. DOI: https://doi.org/10.1146/annurev-bioeng-062117-121139

Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. DOI: https://doi.org/10.1016/S0021-9290(01)00011-2

Zheng, X., Wang, Y., Liu, J., Han, J., Cui, Z., Wu, S., ... & Li, Z. (2022). Gelatin/gentamicin sulfate-modified PMMA bone cement with proper mechanical properties and high antibacterial ability. Materials Research Express, 9(3), 035405. DOI: https://doi.org/10.1088/2053-1591/ac5e1f

Jeong, J., Kim, J. H., Shim, J. H., Hwang, N. S., & Heo, C. Y. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials Research, 23(1), 1-11. DOI: https://doi.org/10.1186/s40824-018-0149-3

Downloads

Published

2023-12-29

How to Cite

Sadia Arshad, Hafsa Aijaz, Muhammad Rizwan, Tooba Khan, & Muhammad Zeeshan Ul Haque. (2023). Development and Analysis of Biomaterial Based on Calcium Sulfate Hemihydrate and Epoxy Resin. Sir Syed University Research Journal of Engineering & Technology, 13(2), 18–22. https://doi.org/10.33317/ssurj.570