Simulation of Silicon Oxycarbide Waveguides for Shorter Band Photonics

Authors

  • Yusra Daudpota Mehran University of Engineering & Technology, Jamshoro
  • Faisal Ahmed Memon Mehran University of Engineering & Technology, Jamshoro
  • Aftab Ahmed Memon Mehran University of Engineering & Technology, Jamshoro
  • Bhawani Shankar Chowdhry Mehran University of Engineering & Technology, Jamshoro

DOI:

https://doi.org/10.33317/ssurj.486

Keywords:

integrated photonics, silicon oxycarbides, optics, bending radius, directional coupler

Abstract

In this research paper, we design and simulate Silicon Oxycarbide (SiOC) channel waveguides and photonic passive device such as directional coupler. SiOC channel waveguides are designed for different values of width and height at shorter wavelength band that is 1310 nm wavelength window with refractive index of SiOC (ncore) =2.2 μm and SiO2 (nclad) = 1.444 μm. TE and TM fundamental mode is achieved at width = 1.5 microns and height = 0.5 microns to understand the single mode operation of SiOC channel waveguides. The minimum bending radius of SiOC waveguide is found to be 30 microns that is large enough to integrate the large scale devices. Directional coupler is designed to measure the coupling power between waveguides with gap 0.6, 0.7 and 0.8 microns that gives the 3dB coupling at 20, 40 and 100 microns. In this research, silicon oxycarbide is presented as potential material platform for the highly efficient photonic devices.

References

Hunsperger, R. G. (2009). Theory of optical waveguides. In Integrated Optics (pp. 33-52). Springer, New York, NY.

Thylén, L., & Wosinski, L. (2014). Integrated photonics in the 21st century. Photonics Research, 2(2), 75-81.

Fathpour, S. (2018). Heterogeneous nonlinear integrated photonics. IEEE Journal of Quantum Electronics, 54(6), 1-16.

Rabiei, P., Steier, W. H., Zhang, C., & Dalton, L. R. (2002). Polymer micro-ring filters and modulators. Journal of lightwave technology, 20(11), 1968.

Le, T. T., Cahill, L. W., & Elton, D. M. (2009). Design of 2× 2 SOI MMI couplers with arbitrary power coupling ratios. Electronics Letters, 45(22), 1.

Arbabi, A., & Goddard, L. L. (2013). Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances. Optics letters, 38(19), 3878-3881.

Stabler, C., Ionescu, E., Graczyk‐Zajac, M., Gonzalo‐Juan, I., & Riedel, R. (2018). Silicon oxycarbide glasses and glass‐ceramics:“All‐Rounder” materials for advanced structural and functional applications. Journal of the American Ceramic Society, 101(11), 4817-4856.

Pradeep, V. S., Graczyk-Zajac, M., Riedel, R., & Soraru, G. D. (2014). New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochimica Acta, 119, 78-85.

Ford, B., Tabassum, N., Nikas, V., & Gallis, S. (2017). Strong photoluminescence enhancement of silicon oxycarbide through defect engineering. Materials, 10(4), 446.

Baudzus, L., & Krummrich, P. M. (2019, March). Efficient low-loss adaptive optical filters based on silicon oxycarbide-liquid crystal hybrid technology. In Optical Fiber Communication Conference (pp. Th2A-3). Optical Society of America.

Kim, H. J., Shao, Q., & Kim, Y. H. (2003). Characterization of low-dielectric-constant SiOC thin films deposited by PECVD for interlayer dielectrics of multilevel interconnection. Surface and coatings technology, 171(1-3), 39-45.

Wang, M. R., Rusli, Xie, J. L., Babu, N., Li, C. Y., & Rakesh, K. (2004). Study of oxygen influences on carbon doped silicon oxide lw k thin films deposited by plasma enhanced chemical vapor deposition. Journal of applied physics, 96(1), 829-834.

Peng, Y., Zhou, J., Zheng, X., Zhao, B., & Tan, X. (2011). Structure and photoluminescence properties of silicon oxycarbide thin films deposited by the rf reactive sputtering. International Journal of Modern Physics B, 25(22), 2983-2990.

Mandracci, P., Frascella, F., Rizzo, R., Virga, A., Rivolo, P., Descrovi, E., & Giorgis, F. (2016). Optical and structural properties of amorphous silicon-nitrides and silicon-oxycarbides: Application of multilayer structures for the coupling of Bloch Surface Waves. Journal of Non-Crystalline Solids, 453, 113-117.

Lin, Z., Guo, Y., Wang, X., Song, C., Song, J., Zhang, Y., & Huang, R. (2015, August). Strong blue light emission from Eu-doped SiOC prepared by magnetron sputtering. In International Symposium on Photonics and Optoelectronics 2015 (Vol. 9656, pp. 156-160). SPIE.

Prucnal, S., Sun, J. M., Skorupa, W., & Helm, M. (2007). Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu. Applied physics letters, 90(18), 181121.

Memon, F. A., Morichetti, F., Abro, M. I., Iseni, G., Somaschini, C., Aftab, U., & Melloni, A. (2017). Synthesis, Characterization and Optical Constants of Silicon Oxycarbide. In EPJ Web of Conferences (Vol. 139, p. 00002). EDP Sciences.

Memon, F. A., Morichetti, F., & Melloni, A. (2017). Waveguiding light into silicon oxycarbide. Applied Sciences, 7(6), 561.

Gallis, S., Nikas, V., Eisenbraun, E., Huang, M., & Kaloyeros, A. E. (2009). On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide. Journal of Materials Research, 24(8), 2561-2573.

Liu, C., Meng, X., Zhang, X., Hong, C., Han, J., Han, W., ... & Du, S. (2015). High temperature structure evolution of macroporous SiOC ceramics prepared by a sol–gel method. Ceramics International, 41(9), 11091-11096.

Memon, F. A., Morichetti, F., & Melloni, A. (2018, January). Exploring silicon oxycarbide films for photonic waveguides. In 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 43-44). IEEE.

Pantano, C. G., Singh, A. K., & Zhang, H. (1999). Silicon oxycarbide glasses. Journal of Sol-Gel Science and Technology, 14(1), 7-25.

Renlund, G. M., Prochazka, S., & Doremus, R. H. (1991). Silicon oxycarbide glasses: Part II. Structure and properties. Journal of Materials Research, 6(12), 2723-2734.

Ryan, J. V., & Pantano, C. G. (2007). Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(1), 153-159.

Law, A. W., Chong, W. Y., Adikan, F. R. M., & Ahmad, H. (2008, August). Modeling of 980/1550nm PLC WDM directional coupler. In 2008 6th National Conference on Telecommunication Technologies and 2008 2nd Malaysia Conference on Photonics (pp. 6-11). IEEE.

Faneca, J., Bucio, T. D., Gardes, F. Y., & Baldycheva, A. (2020). O-band N-rich silicon nitride MZI based on GST. Applied Physics Letters, 116(9), 093502.

Moghaddam, M. K., Attari, A. R., & Mirsalehi, M. M. (2010). Improved photonic crystal directional coupler with short length. Photonics and Nanostructures-Fundamentals and Applications, 8(1), 47-53.

Xie, Y., Shi, Y., Liu, L., Wang, J., Priti, R., Zhang, G., ... & Dai, D. (2020). Thermally reconfigurable silicon photonic devices and circuits. IEEE Journal of Selected Topics in Quantum Electronics, 26(5), 1-20.

Soref, R. (2018). Tutorial: Integrated-photonic switching structures. Apl Photonics, 3(2), 021101.

Wang, F., Yang, J., Chen, L., Jiang, X., & Wang, M. (2006). Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 18(2), 421-423.

Melloni, A., Costa, R., Cusmai, G., & Morichetti, F. (2009). The role of index contrast in dielectric optical waveguides. International Journal of Materials and Product Technology, 34(4), 421-437.

Downloads

Published

2022-12-25

How to Cite

Daudpota, Y., Memon, F. A., Memon, A. A., & Chowdhry, B. S. (2022). Simulation of Silicon Oxycarbide Waveguides for Shorter Band Photonics. Sir Syed University Research Journal of Engineering & Technology, 12(2), 33–38. https://doi.org/10.33317/ssurj.486