Computational Analysis of Temperature Effects on Monocrystalline PV Module using MATLAB

Authors

  • Qasir Ali Memon Sukkur IBA University
  • Abdul Majeed Shaikh Sukkur IBA University
  • Shoaib Ahmed Shaikh Sukkur IBA University
  • Muhammad Fawad Shaikh Sukkur IBA University
  • Shakil Ahmed Jiskani Sukkur IBA University

DOI:

https://doi.org/10.33317/ssurj.412

Keywords:

Photovoltaic system, Mono-crystalline PV module, Temperature, Irradiance, Power, Efficiency, Fill Factor

Abstract

The world has moved from fossil fuels to renewable energy resources due to adverse environmental impacts, limited sources, and economic issues. It is not necessary that renewable energy sources have always led to many advantages but have drawbacks like weather dependency, unreliability, storage problems, and upfront costs. This study focuses on one of the major types of RES solar PV systems. The data is used from the specification of solar modules at Sukkur IBA University Sindh Pakistan. Solar photovoltaic output depends upon the weather conditions which vary from time to time resulting in variation in irradiance, temperature, power, and efficiency. This paper aims to observe the effects of the temperature ranging from 1 to 55°c on the efficiency of the monocrystalline photovoltaic module using MATLAB/Simulink. The performance parameters could be Open Circuit Voltage (VOC), Short Circuit Current (ISC), Maximum Power Point Current (IMP), Maximum Power Point Voltages (VMP), Fill Factor (FF), and Efficiency (η). Results from the simulation show that the estimated variation of silicon solar cell parameters such as VOC, IMP, series resistance, FF, and η decrease frequently with increasing temperature. And some parameters such as ISC, IMP, and temperature of the panel increase with rising ambient temperature.World has moved from fossil fuels to renewable energy resources due to adverse environmental impacts, limited sources, and economic issues. It is not necessary that renewable energy sources have always led to many advantages but have drawbacks like weather dependency, unreliability, storage problems and upfront costs. This study focusses on the one of the major types of RES solar PV system. The data is used from the specification of solar modules at Sukkur IBA University Sindh Pakistan. Solar Photovoltaic output depends upon the weather conditions which varies time to time resulting variation in irradiance, temperature, power, and efficiency. This paper aims to observe the effects of the temperature ranging 1 to 55°c on the efficiency of the mono-crystalline photovoltaic module using MATLAB/Simulink. The performance parameters could be as open circuit voltage (VOC), short circuit current (ISC), maximum power point current (IMP), maximum power point voltages (VMP), Fill Factor (FF) and efficiency (η). Results from simulation shows that the estimated variation of silicon solar cells parameters such as open circuit voltages, maximum power point voltages, series resistance, fill factor and efficiency decrease frequently with increasing temperature. And some parameters such as short-circuit current, maximum power point current and temperature of the panel increases with rising ambient temperature.

References

Irfan, M., Zhao, Z. Y., Ahmad, M., & Mukeshimana, M. C. (2019). Solar energy development in Pakistan: Barriers and policy recommendations. Sustainability, 11(4), pp1206. Retrieved from: https://doi.org/10.3390/su11041206

Shaikh, S., Soomro, N., Razaque, F., Soomro, S., Shaikh, N., & Abid, G. (2018, August). Analysis of Illumination Lamp’s Performance by Retrofit at University Building. In International Conference for Emerging Technologies in Computing (pp. 137-152). Springer, Cham.

Razaque, F., Soomro, N., Samo, J. A., Dharejo, H., & Shaikh, S. (2017). Analysis of Home Energy Consumption by K-Mean. Annals of Emerging Technologies in Computing (AETiC), Print ISSN, 2516-0281.

Shaikh, S., Katyara, S., Majeed, A., Khand, Z. H., Staszewski, L., Shah, M., ... & Akhtar, F. (2020). Holistic and Scientific Perspectives of Energy Sector in Pakistan: Progression, Challenges, and Opportunities. IEEE Access, 8, 227232-227246. Retrieved from: https://ieeexplore.ieee.org/abstract/document/9301281

Bhan, V., Shaikh, S. A., Khand, Z. H., Ahmed, T., Khan, L. A., Chachar, F. A., & Shaikh, A. M. (2021). Performance evaluation of perturb and observe algorithm for MPPT with buck–boost charge controller in photovoltaic systems. Journal of Control, Automation and Electrical Systems, 32(6), 1652-1662.

Jacobson, M. Z., & Delucchi, M. A. (2009). A path to sustainable energy by 2030. Scientific American, 301(5), 58-65.

Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.

Memon, Q. A., Rahimoon, A. Q., Ali, K., Shaikh, M. F., & Shaikh, S. A. (2021). Determining Optimum Tilt Angle for 1 MW

Photovoltaic System at Sukkur, Pakistan. International Journal of Photoenergy, 2021.

Paul, P. S., Mondal, S., Akter, N., & Mominuzzaman, S. M. (2014, December). Modeling combined effect of temperature and irradiance on solar cell parameters by MATLAB/simulink. In 8th International Conference on Electrical and Computer Engineering (pp. 512-515). IEEE.

Schindler, F., Fell, A., Müller, R., Benick, J., Richter, A., Feldmann, F., ... & Glunz, S. W. (2018). Towards the efficiency limits of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 185, 198-204.

Adachi, D., Hernández, J. L., & Yamamoto, K. (2015). Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Applied Physics Letters, 107(23), 233506.

Yadav, A. K., & Chandel, S. S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. Renewable and Sustainable Energy Reviews, 23, 503-513.

Benghanem, M. (2011). Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Applied Energy, 88(4), 1427-1433.

Singh, P., & Ravindra, N. M. (2012). Temperature dependence of solar cell performance—an analysis. Solar energy materials and solar cells, 101, 36-45.

Fuentes, M., Nofuentes, G., Aguilera, J., Talavera, D. L., & Castro, M. (2007). Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates. Solar Energy, 81(11), 1396-1408.

Bashir, M. A., Ali, H. M., Khalil, S., Ali, M., & Siddiqui, A. M. (2014). Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan. International Journal of Photoenergy, 2014.

Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2019). An improved empirical model for estimation of temperature effect on performance of photovoltaic modules. International Journal of Photoenergy, 2019.

Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric environment, 45(25), 4299-4304.

Catelani, M., Ciani, L., Cristaldi, L., Faifer, M., Lazzaroni, M., & Rossi, M. (2012, September). Characterization of photovoltaic panels: The effects of dust. In 2012 IEEE International Energy Conference and Exhibition (ENERGYCON) (pp. 45-50). IEEE.

Akhmad, K., Kitamura, A., Yamamoto, F., Okamoto, H., Takakura, H., & Hamakawa, Y. (1997). Outdoor performance of amorphous silicon and polycrystalline silicon PV modules. Solar Energy Materials and Solar Cells, 46(3), 209-218.

Rehman, S., & El-Amin, I. (2012). Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy, 46(1), 451-458.

Singh, P., Singh, S. N., Lal, M., & Husain, M. (2008). Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells, 92(12), 1611-1616.

Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable energy, 31(4), 553-567.

Sanusi, Y. K., Fajinmi, G. R., & Babatunde, E. B. (2011). Effects of ambient temperature on the performance of a photovoltaic solar system in a tropical area. The Pacific Journal of Science and Technology, 12(2), 176-180.

Ibrahim, H., & Anani, N. (2017). Variations of PV module parameters with irradiance and temperature. Energy Procedia, 134, 276-285.

Cotfas, D. T., Cotfas, P. A., & Machidon, O. M. (2018). Study of temperature coefficients for parameters of photovoltaic cells. International Journal of Photoenergy, 2018.

Brano, V. L., Orioli, A., Ciulla, G., & Di Gangi, A. (2010). An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, 94(8), 1358-1370.

Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on power electronics, 24(5), 1198-1208.

Khezzar, R., Zereg, M., & Khezzar, A. (2014). Modeling improvement of the four parameter model for photovoltaic modules. Solar Energy, 110, 452-462.

Zhou, W., Yang, H., & Fang, Z. (2007). A novel model for photovoltaic array performance prediction. Applied energy, 84(12), 1187-1198.

Orioli, A., & Di Gangi, A. (2013). A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied energy, 102, 1160-1177.

Ibrahim, H., & Anani, N. (2017). Variations of PV module parameters with irradiance and temperature. Energy Procedia, 134, 276-285.

De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar energy, 80(1), 78-88.

Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009, September). Modeling and circuit-based simulation of photovoltaic arrays. In 2009 Brazilian Power Electronics Conference (pp. 1244-1254). IEEE.

Schroder, D. K. (2015). Semiconductor material and device characterization. John Wiley & Sons.

Bogning Dongue, S., Njomo, D., & Ebengai, L. (2013). An improved nonlinear five-point model for photovoltaic modules. International Journal of Photoenergy, 2013.

Omer, A. M. (2008). On the wind energy resources of Sudan. Renewable and Sustainable Energy Reviews, 12(8), 2117-2139.

Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar energy, 80(9), 1072-1088.

Or, A. B., & Appelbaum, J. (2014). Dependence of multi-junction solar cells parameters on concentration and temperature. Solar Energy Materials and Solar Cells, 130, 234-240.

Shaikh, S. A., Shaikh, A. M., Shaikh, M. F., Jiskani, S. A., & Memon, Q. A. (2022). Technical and Economical Evaluation of Solar PV System for Domestic Load in Pakistan: An Overlook Contributor to High Tariff and Load Shedding. Sir Syed University Research Journal of Engineering & Technology, 12(1), 23-30.

Awan, M. M. A. (2022). A Technical Review of MPPT Algorithms for Solar Photovoltaic System: SWOT Analysis of MPPT Algorithms. Sir Syed University Research Journal of Engineering & Technology, 12(1), 98-106.

Downloads

Published

2022-12-25

How to Cite

Memon, Q. A. ., Shaikh, A. M. ., Shaikh, S. A., Shaikh, M. F. ., & Jiskani, S. A. (2022). Computational Analysis of Temperature Effects on Monocrystalline PV Module using MATLAB. Sir Syed University Research Journal of Engineering & Technology, 12(2), 19–25. https://doi.org/10.33317/ssurj.412