Piece-wise Linear Fuzzy Sliding Mode Controller for Deep Submergence Rescue Vehicle (DSRV)

Authors

  • Ghulam E Mustafa Abro Electrical and Electronic Engineering Department Universiti Teknologi PETRONAS,

DOI:

https://doi.org/10.33317/ssurj.371

Keywords:

Fuzzy controller, piece-wise linear approach, sliding mode control design

Abstract

The paper aims to present the design and performance of a single input fuzzy sliding mode controller (SIFSMC) to control the motion of deep submergence rescue vehicle (DSRV). The proposed controller uses the linear single dimension rule base where as the conventional fuzzy sliding mode controllers (CFSMC) uses the two-dimensional rule base. Moreover, the proposed controller does not merely depend on the DSRV exact mathematical model unlike that of the linear controllers. Using SIFSMC, the number of rules governs are also greatly reduced in comparison with the CFSMC, without compromising the overall performance. The robustness, equivalency and efficacy of proposed idea is illustrated through the simulation results using a marine system simulator in MATLAB/Simulink® environment. The main objective of the paper is to compare CFSMC and SIFSMC for UUV’s. Consequently, a comparative analysis of proposed SIFSMC is shown with the CFSMC for the same system of DSRV.

References

Goheen, K. R., & Jefferys, E. R. (1990, May). The application of alternative modelling techniques to ROV dynamics. In Proceedings., IEEE International Conference on Robotics and Automation (pp. 1302-1309). IEEE.

Ali, Z. A., & Jabeen, B. (2019). Prototyping Non-holonomic Hovercraft for Path Planning and Obstacle Avoidance. Sir Syed University Research Journal of Engineering & Technology, 9(1).

Abro, G. E. M., Zulkifli, S. A., Asirvadam, V. S., & Ali, Z. A. (2021, August). Model-Free-Based Single-Dimension Fuzzy SMC Design for Underactuated Quadrotor UAV. In Actuators (Vol. 10, No. 8, p. 191). Multidisciplinary Digital Publishing Institute.

Yoerger, D., & Slotine, J. (1985). Robust trajectory control of underwater vehicles. IEEE journal of Oceanic Engineering, 10(4), 462-470.

Yoerger, D. R., Cooke, J. G., & Slotine, J. J. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178.

Fossen, T. I., & Sagatun, S. I. (1991). Adaptive control of nonlinear systems: A case study of underwater robotic systems. Journal of Robotic Systems, 8(3), 393-412.

Lindgren, A. G., Cretella, D. B., & BESSACIN. AF. (1967). Dynamics and control of submerged vehicles. ISA TRANSACTIONS, 6(4), 335-+.

Young, D. B. (1969). Model Investigation of the Stability and Control Characteristics of the Contract Design for the Deep Submergence Rescue Vehicle (DSRV). Naval Ship Research and Development Center, Washington, DC.

Gertler, M., & Hagen, G. R. (1967). Standard equations of motion for submarine simulation. David w Taylor Naval Ship Research and Development Center Bethesda MD.

Richards, R. J., RJ, R., & DP, S. (1981). Depth control of a submersible vehicle. In Ship building Progress, vol 28, pp 30-39.

Milliken, L. G. (1984). Multivariable control of an underwater vehicle. M S Thesis, MIT, Cambridge, MA.

Humphreys, D. (1981, September). Dynamics and hydrodynamics of ocean vehicles. In in IEEE Oceans ’81 Conf Proc, vol 1, pp 88-91.

Dobeck G. J, Wadanson K. W, and Freeman E. H, (1982). Navigation, guidance, and control of an autonomous 30-foot model submarine. Rep NCSC TR 370-82, Naval Coastal Systems Center, Panama City, FL..

Ruth M. J., and Humphreys D. E.,.

(1990). A robust multivariable control system for low speed W V operation. In Proc. AUV ’90, IEEE Catalog No. 9OCH2856-3, pp. 51-59,.

Dougherty, F., & Woolweaver, G. (1990, June). At-sea testing of an unmanned underwater vehicle flight control system. In Symposium on Autonomous Underwater Vehicle Technology (pp. 65-73). IEEE.

Cristi, R., Papoulias, F. A., & Healey, A. J. (1990). Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE journal of Oceanic Engineering, 15(3), 152-160.

Humphreys, D. (1981, September). Dynamics and hydrodynamics of ocean vehicles. In OCEANS 81 (pp. 88-91). IEEE.

Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles John Wiley Sons Ltd. Chichester, United Kingdom.

Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE journal of Oceanic Engineering, 18(3), 327-339.

DeCarlo, R. A., Zak, S. H., & Matthews, G. P. (1988). Variable structure control of nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 76(3), 212-232.

Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall.

Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: A survey. IEEE transactions on industrial electronics, 40(1), 2-22.

Mariottini, G. L., Oriolo, G., & Prattichizzo, D. (2007). Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 23(1), 87-100.

Zadeh, L. A. (1999). Fuzzy Logic Toolbox For Use With Matlab. The MathWorks Inc.

Choi, B. J., Kwak, S. W., & Kim, B. K. (2000). Design and stability analysis of single-input fuzzy logic controller. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(2), 303-309.

Abro, G. E. M., Zulkifli, S. A., Asirvadam, V. S., & Ali, Z. A. (2021, August). Model-Free-Based Single-Dimension Fuzzy SMC Design for Underactuated Quadrotor UAV. In Actuators (Vol. 10, No. 8, p. 191). Multidisciplinary Digital Publishing Institute.

Abro, G. E. M., Asirvadam, V. S., & Zulkifli, S. A. (2020, September). Single-Input Fuzzy-Sliding Mode Control for an Underactuated Quadrotor Craft. In 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) (pp. 1-6). IEEE.

Viswanathan, K., Oruganti, R., & Srinivasan, D. (2005). Nonlinear function controller: a simple alternative to fuzzy logic controller for a power electronic converter. IEEE Transactions on Industrial Electronics, 52(5), 1439-1448.

Ishaque, K., Abdullah, S. S., Ayob, S. M., & Salam, Z. (2010). Single input fuzzy logic controller for unmanned underwater vehicle. Journal of Intelligent and Robotic Systems, 59(1), 87-100.

Ishaque, K., Abdullah, S. S., Ayob, S. M., & Salam, Z. (2011). A simplified approach to design fuzzy logic controller for an underwater vehicle. Ocean Engineering, 38(1), 271-284.

Pierson, W. J., & Moskowitz, L. (1963). A proposed spectral form for fully developed wind seas based on the similarity theory. Journal of Geophysical Research.

Abro, G. E. M., Asirvadam, V. S., Bin Mohd Zulkifli, S. A., Sattar, A., Kumar, D., & Anwer, A. (2020). Effects of unmodelled dynamic factors on an under-actuated quadrotor: A review of hybrid observer design methods. Measurement and Control, 53(9-10), 1978-1987.

Saelid, S., Jenssen, N., & Balchen, J. (1983). Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. IEEE Transactions on Automatic Control, 28(3), 331-339.

Downloads

Published

2021-10-10

How to Cite

Abro, G. E. M. (2021). Piece-wise Linear Fuzzy Sliding Mode Controller for Deep Submergence Rescue Vehicle (DSRV). Sir Syed University Research Journal of Engineering & Technology, 11(2). https://doi.org/10.33317/ssurj.371