The Synthesis and Fabrication of Polyvinyl Alcohol Nanofibers Based Capacitive Relative Humidity Sensor

Authors

  • Haroon Ur Rashid University of Peshawar

DOI:

https://doi.org/10.33317/ssurj.303

Keywords:

Key words: Nanofibers; FTIR; electrospinning, Capacitive Sensor

Abstract

 

Abstract

Capacitive humidity sensor based on Polyvinyl-alcohol (PVA) electrospun nanofibers was fabricated. PVA nanofibers were synthesized through versatile electrospinning technique. The synthesized nanofibers were heat treated and characterized via Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and thermogravimetric Analyzer (TGA) for structural, morphological and thermal properties. The fibers of admirable morphological structure were selected and deposited over interdigitated alumina electrodes for the investigation of Relative Humidity (RH) sensing characteristics. The variation in capacitance of the sensor with RH was measured 48pf at 32-92% RH. The dynamic response study confirmed the durability and stability of the sensor. The material exhibited quick response and recovery time and takes 13.27 seconds to measure the maximum RH value. Thus, the proposed sensing material has the potential of possible application in humidity sensing devices.

 

References

Rathi, K., & Pal, K. (2017). Impact of doping on GO: Fast response–recovery humidity sensor. ACS Omega, 2(3), 842-851.

Rafique, F., & Siddiqui, N. (2012). Parametric comparison of selected dual elements PIR sensors. SSU Res. J. of Engg. and Tech, 2(1), 7.

Liu, M. Q., Wang, C., & Kim, N. Y. (2017). High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO2 microparticles. Sensors, 17(2), 284.

Zhou, S., Deng, F., Yu, L., Li, B., Wu, X., & Yin, B. (2016). A novel passive wireless sensor for concrete humidity monitoring. Sensors, 16(9), 1535.

Mogera, U., Sagade, A. A., George, S. J., & Kulkarni, G. U. (2014). Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Scientific reports, 4(1), 1-9.

Wang, X., & Gao, H. (2011, October). Agriculture wireless temperature and humidity sensor network based on ZigBee technology. In International Conference on Computer and Computing Technologies in Agriculture (pp. 155-160). Springer, Berlin, Heidelberg.

Sayar Irani, F., & Tunaboylu, B. (2016). SAW humidity sensor sensitivity enhancement via electrospraying of silver nanowires. Sensors, 16(12), 2024.

Zhao, Z. G., Liu, X. W., Chen, W. P., & Li, T. (2011). Carbon nanotubes humidity sensor based on high testing frequencies. Sensors and Actuators A: Physical, 168(1), 10-13.

Yang, M. Z., Dai, C. L., & Lin, W. Y. (2011). Fabrication and characterization of polyaniline/PVA humidity microsensors. Sensors, 11(8), 8143-8151.

Horzum, N., Taşçıoglu, D., Okur, S., & Demir, M. M. (2011). Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta, 85(2), 1105-1111.

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity, and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074.

Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World scientific.

Hu, H., Zhang, X., He, Y., Guo, Z. S., Zhang, J., & Song, Y. (2013). The combined effect of relative humidity and temperature on dynamic viscoelastic properties and glass transition of poly (vinyl alcohol). Journal of Applied Polymer Science, 130(5), 3161-3167.

Abd El-aziz, A. M., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian journal of chemistry, 10(8), 1052-1060.

Zhou, G., Byun, J. H., Oh, Y., Jung, B. M., Cha, H. J., Seong, D. G., ... & Chou, T. W. (2017). Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly (vinyl alcohol) filaments. ACS applied materials & interfaces, 9(5), 4788-4797.

Venugopalan, T., Yeo, T. L., Sun, T., & Grattan, K. T. (2008). LPG-based PVA coated sensor for relative humidity measurement. IEEE Sensors Journal, 8(7), 1093-1098.

Wang, Y., Shen, C., Lou, W., & Shentu, F. (2016). Fiber optic humidity sensor based on the graphene oxide/PVA composite film. Optics Communications, 372, 229-234.

Amin, E. M., Karmakar, N. C., & Winther-Jensen, B. (2013). Polyvinyl-alcohol (PVA)-based RF humidity sensor in microwave frequency. Progress In Electromagnetics Research B, 54, 149-166.

Correia, S. F., Antunes, P., Pecoraro, E., Lima, P. P., Varum, H., Carlos, L. D., ... & André, P. S. (2012). Optical fiber relative humidity sensor based on an FBG with a di-ureasil coating. Sensors, 12(7), 8847-8860.

Penza, M., & Anisimkin, V. I. (1999). Surface acoustic wave humidity sensor using polyvinyl-alcohol film. Sensors and Actuators A: Physical, 76(1-3), 162-166.

Chen, Z., & Lu, C. (2005). Humidity sensors: a review of materials and mechanisms. Sensor Letters, 3(4), 274-295.

Ding, B., Wang, M., Wang, X., Yu, J., & Sun, G. (2010). Electrospun nanomaterials for ultrasensitive sensors. Materials Today, 13(11), 16-27.

Aussawasathien, D., Dong, J. H., & Dai, L. (2005). Electrospun polymer nanofiber sensors. Synthetic Metals, 154(1-3), 37-40.

Hillar, K. (1956), . ProbsthainDie Abschatzung der Reaktionsenthalpie bei der DifferentialthermoanalyseBer. Dt. Keram. Ges., 33, pp. 299-303.

George, T. D., & Wendlandt, W. W. (1963). The thermal decomposition of metal complexes—II Some ammine and ethylenediamine complexes of nickel (II). Journal of Inorganic and Nuclear Chemistry, 25(4), 395-405.

Yao, W., Chen, X., & Zhang, J. (2010). A capacitive humidity sensor based on gold–PVA core–shell nanocomposites. Sensors and Actuators B: Chemical, 145(1), 327-333.

Huang, X. J., & Choi, Y. K. (2007). Chemical sensors based on nanostructured materials. Sensors and Actuators B: Chemical, 122(2), 659-671.

Zhao, H., Chen, Y., Quan, X., & Ruan, X. (2007). Preparation of Zn-doped TiO 2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation. Chinese Science Bulletin, 52(11), 1456-1461.

Ji, H., Lu, H., Ma, D., Yu, J., & Ma, S. (2008). Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chinese Science Bulletin, 53(9), 1352-1357.

Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied physics letters, 84(18), 3654-3656.

Downloads

Published

2021-08-16

How to Cite

Rashid, H. U. (2021). The Synthesis and Fabrication of Polyvinyl Alcohol Nanofibers Based Capacitive Relative Humidity Sensor. Sir Syed University Research Journal of Engineering & Technology, 11(01). https://doi.org/10.33317/ssurj.303