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Abstract 

The orientation and focus of this research piece are the extraction of the foreground and the compositing of this extracted region into another 

background. This phenomenon is termed as, 'Image Matting', which is frequently employed in film production or the digital media world. 

The proposed method approaches the ill-posed nature of image matting via a non-parametric sampling-based method along with the 

clustering technique known as ‘Superpixel’. In the proposed method, pixels of the entire image(s) tend to gather in close proximity under 

one unit (Superpixel) with respect to color, intensity, and texture. This gathering in close proximity reduces the search space more than 20 

times and helps in efficiently finding the association of unknown regions with the samples from the background and foreground. The use of 

samples facilitates the pixel color assimilating with local image structure, which is significant to calculate a good resultant alpha matte 

particularly in the image having complex texture, and in natural images. As per my knowledge and study, the matting problem using centroids 

of Superpixels has not previously been explored. Results are evaluated on different images on an online standard open-source dataset, 

available for image matting. Results are comparable to the different matting algorithms applied independently on images of the dataset. 

Confidence and ameliorated refinements of proposed methods are evident in the obtained results compared to other image matting methods. 

 

Index Terms: Alpha Matte, Global/Local Samples, Image Matting, Non-Parametric, Super-Pixel. 

 

I. INTRODUCTION 

Image matting is best described as the accurate and exact 

extraction of the foreground region from a composite 

image. Composite image ‘Ix’ is the combination of 

foreground pixels ‘Fx’, background pixels ‘Bx’, and alpha 

matte. In computer vision; image matting plays an 

imperative role in media production and video editing 

especially when there is a need to combine a foreground 

object into another different desired background scene. 

Due to the Complex nature of image and video matting 

various researchers have marked their contribution in 

matting literature and several are in progress. The idea of 

channel separation along with all color dimensions, to 

preserve the opaqueness details of foreground objects in a 

site was brought forward by Alvy Ray Smith [1] in 1970. 

Later Porter and Duff [2] developed the idea in their 

significant research paper for compositing digital image(s). 

They proposed an important equation, i.e., eq. (1) known 

as the compositing equation and formulated that governs 

digital image matting. 
 

                    𝐼𝑥  =  𝛼𝑥𝐹𝑥  +  (1 −  𝛼𝑥)𝐵𝑥                        (1) 
 

The concern about matting is that, it is an ill-posed method, 

as there are three numbers of unknown elements; the first 

is eq. (1). While 𝜶𝒙 is between 0 and 1; where 1 means the 

imperfect-transparent foreground pixels. If pixel x is said 

to be a distinct foreground if alpha is 1 and a distinct 

background if alpha is 0; if it is not then it is defined as 

mixed. 

Various research methods that approach the image matting 

problem, segregate whole image pixels as exact 

foreground, mixed, and exact background with the help of 

trimap [3]. To decide mixed pixels as foreground and 

background alpha values each pixel is estimated. The 

under-constrained matting problems are generally 

approached in two interactive ways, Scribble-based [4], 

and [5], and Trimap-based image matting. The defined 

matting problem can be minimized with the help of a 

trimap. Figure I trimap is a type of input that corresponds 

to its original image taken from our reference i.e., [6]. 

Trimap can be generated by different segmentation 

algorithms or with the help of user manual interaction [7], 

and [8] using trimap as an input can produce desirable and 

optimal results. Hard segmentation and soft segmentation 

are correlated to each other in this process, to correctly take 

out semantically significant foreground regions. 

Approximately, all image matting techniques begin with 

an input image based on three important regions: 

foreground background, and unknown. This triad input 

pixel map is termed as trimap as shown in Figure 1. Thus 

the matting problem is minimized to reckon and wring 

foreground pixels (𝑭𝒙) background pixels (𝑩𝒙) and  (𝜶𝒙) 

for pixels in the grey region. Existing matting techniques 

can be segregated into three general categories affinity-

based methods and sampling-based methods.  

Affinity-based approaches assume region-based image 

statistics by considering different affinities between 

neighbor region pixels. As a replacement for straight 

estimating the alpha value at each and every pixel, it 

basically models the matte gradient across the image 

lattice. The pixel correlations are typically well-built so the 

local smoothness supposition normally holds, still for 

moderately multifarious images. In Poisson matting [9] the 

assumption is over locally smooth of an intensity change. 
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Random Walk matting [10] proposed a similar method to 

Poisson matting that is based on the affinity matrix in the 

definition of the Gaussian function. In Closed Form 

matting [11] a newly defined quadratic cost function is 

formulated in ‘αx’ to estimate the optimum alpha matte. 

KNN matting [12] assumes non-local principles with K 

nearest neighbors. Since pixel matting statistics in these 

approaches are transmitted from the identified known 

regions to the unidentified unknown regions therefore 

leads to the error across the alpha matte. 

 

 
Figure I: One of Dataset Representation Input Image with its Trimap 

Provided by Alpha Matting Evaluation Website [6] 

 

Generally, sampling-based methods find the relation of 

alpha parameters with the local samples [7], and [8]. Such 

methods gather a set of samples from known regions 

(foreground/ background) to calculate the alpha values of 

unknown pixels. Different techniques are practiced to 

identify the samples from known regions that optimally 

represent the correct foreground and background colors of 

every unknown pixel in the Trimap. When the optimum 

known foreground and background samples are identified 

for every pixel x, its alpha value is estimated as eq. (1). 

This approach can further be divided into two parts 

parametric and nonparametric. Parametric methods [13-

15] sample of foreground and background regions are 

selected, this method generally fits parametric statistical 

models to the background and foreground samples, 

normally Gaussians distribution. For estimating the alpha 

value of a selected pixel from an unknown region, find the 

distances of this pixel to the foreground and background 

distributions. Non-parametric methods [16-19] basically 

collect samples of known foreground (F) and known 

background (B) to estimate alpha values of pixels 

belonging to unknown regions, regardless of fitting 

parametric statistics. However, the estimated alpha matte 

is extremely relying on the chosen samples from the known 

region. It reduces the quality; if the desired color of the 

foreground and the desired color of the background in 

unknown pixels are not present in the sample sets that were 

selected. Mishima introduced blue screen matting [20], it 

also depends on foreground and background representative 

samples. The background has just one color bunch, each 

background pixel can be enclosed by a little globe 

approximated by a polyhedra (triangular mesh) in the color 

space. Each foreground pixel constructs other polyhedra 

outer the background. The alpha value of an unknown 

pixel is then estimated by compiling its relative position to 

the other polyhedra. The knockout technique estimates the 

unknown by taking the weighted sum of the close 

neighbor's pixels’ color in the foreground region [21].  

Weights are proportional to their local spatial distances to 

respective unknown pixels. The same method is followed 

to estimate background color. With respect to the relative 

position of these unknown pixels, their association with 

foreground and background is decided. Finally, in each 

separate color channel, all unknown mixed pixels are 

estimated three times w.r.t color channels. The Robust 

matting technique introduced the selection of confidence 

sample pairs [16]. This confidence is defined by color 

fitness criteria that take samples having a high rate of 

spatial resemblance in Euclidean space. This reduces the 

matting cost function. These high-order samples estimate 

both foreground and background color and later this 

information facilitates the computation of alpha matte. 

Improved color modeling method uses the same strategy 

but the selection of samples is based on geodesic distance 

instead of Euclidean distance [17]. A Shared matting 

algorithm gathers samples from the emanating border of 

mixed pixels’ region., each unknown pixel collects very 

few samples, but the samples are further shared among 

neighboring pixels [18]. Selection of the sample is on the 

basis of probabilistic attributes, photometric attributes, and 

even spatial process attributes are considered. Approaches 

like [17], and [22-26] are worked on learning-based 

methods. The approaches combine the global and local 

results of KNN and Closed-form matting and regenerate 

alpha matte from the obtained results [8]. Further to gain 

more confidence in the alpha matte quality, the process 

proceeded with the Deep Convolutional Neural Network 

(DCNN). FBA-net is introduced by authors to approximate 

alpha with foreground and background [27]. Researchers 

have proposed a model that works on semantic and 

Textural Compensate Path (TCP) in parallel, A Feature 

Fusion Unit (FFU) fused multi-scale features from the 

semantic path and passed them to TCP [28].  

In reference [29] non-negative matrix factorization is used 

to estimate alpha matte. It assumes two spatial patches. 

These approaches produce inconsistency in the resultant 

alpha matte due to local samples are not truly 

representative of unknown pixels. The method of Fast and 

Adaptive Trimaps (FATs) is introduced in [6]. Extraction 

of the foreground is obtained via superpixel and then the 

Grab cut method is applied to gain a raw mask. Existing 

matting algorithm are not consistent in terms of large 

sampling search but also lacks in smoothing and extracting 

desired alpha.  

 In this paper, a global sampling-based method is 

introduced to minimize the true samples problem in the no-

parametric approach. A clustering-based technique called 

Superpixel is used to efficiently find the samples from 

known regions.  The superpixel technique reduces the 

foreground and background known region more than 20 

times so it can efficiently find the optimum samples in the 

background and foreground for every unknown pixel. A 

high-confidence foreground and background pair set of 

colors is selected using Euclidean distance analysis to 

estimate the alpha matte. 

II. SUPERPIXEL    

Superpixel is a method that perceptually sectionizes image 

pixels on the basis of color, intensity, and texture. Each 

atomic section facilitates delimiting of pixels’ redundancy 

in the sample and provides primal to estimate image 

distinctive and resembled features. These methods have set 
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their marks in many computer vision algorithms, such as 

object segmentation in images and videos. 

Figure II demonstrates image segmentation into 

superpixels with distinct labels for each superpixel. The 

number of original unit samples is reduced by a 

considerable amount, from 76800 pixels to 2843 super-

pixels.  Every unit possesses similar properties in terms of 

texture, intensity, and color.  
 

 
Figure II: Image Segmentation after Generating Superpixels using 

SLIC Algorithm with Distinct Labels 

 
There are two categories of algorithms presented for 

generating superpixels; graph-based approach and gradient 

ascent approach. In Graph-based approaches [30-33] every 

pixel is assumed as a node like in a graph for generating 

superpixel. Similarities among neighboring pixels are 

calculated using edge weights between two nodes. 

Superpixels are generated by reducing a cost function 

described in the graph. In Gradient-ascent-based 

algorithms [26], [34], and [35], initialization starts from an 

uneven preliminary clustering of pixels, and gradient 

ascent techniques recursively filter the clusters until 

various convergence standard is achieved to generate 

superpixels. In the proposed research method a Simple 

Linear Iterative Clustering (SLIC) algorithm is used [36]. 

SLIC is a recent approach for producing superpixels that is 

more robust than existing superpixel algorithms, more 

memory efficient, exhibits traditional unit boundary 

attachment, and better optimizes the performance 

efficiency of segmentation algorithms. Simple Linear 

Iterative Clustering (SLIC) is an adaptation of k-means for 

generating superpixels with two significant distinctions. 

The first difference is the reduced distance calculation by 

delimiting the search space to a specific region which is 

proportional to the superpixel size. This minimizes the 

complexity in terms of pixels N and is free from the 

number of superpixels K. The Second difference is the 

combined measurement of superpixel closeness via 

weighted distance in both spatial and color spaces, while at 

the same time giving control over the superpixel's 

compactness and size.  

In the proposed algorithm different algorithms [26], [30], 

and [34] for generating superpixels are tested and 

examined. In the proposed technique Simple Linear 

Iterative Clustering (SLIC) is used because it has found 

optimum results and it is easy to implement [37-39]. 

III. IMAGE MATTING USING SUPERPIXEL 

CENTROID 

The proposed approach is initialized by a user-defined 

trimap. The proposed algorithm can be split into five main 

steps: 

A. Applying Superpixels Technique on the Image along 

with Trimap 

SLIC Superpixels technique is implemented in Matlab, 

shareware codes are available. Firstly, the SLIC technique 

is applied to the image along with Trimap. Firstly, applying 

SLIC on the natural image will return unique labels for 

each superpixel, here for generating the desired number of 

superpixels can be specified. Commission International de 

l’Eclairage (CIELAB) color model is used in this 

algorithm for color images, this procedure for clustering 

initiates with centers of k initial clusters are defined as 

𝐶𝑚= [𝑙𝑚  𝑎𝑚   𝑏𝑚   𝑥𝑚   �̂�𝑚  ]
𝑇 these are intended samples on a 

standard grid spaced Sm pixels separately. To generate 

superpixels approximately uniformly in size, the grid time 

period is Sm = √𝑁/𝐾. Then the centers of clusters are 

shifted to seed positions equivalent to the minimum 

gradient location in a size of   3 × 3 nearest neighborhood 

window. After performing the assignment, each pixel 

corresponds with the adjacent nearest center of the cluster 

whose search area overlies its place. Measurement of 

distance ‘Dm’ can be done as calculated in eq. (4). To 

combine the two distances first distance for CIELAB color 

space ‘dcs’ and the second distance ‘dp’ between positions 

of each pixel and cluster center Cm can be calculated under 

a single unit �̂� as eq. (2). 
 

𝑑𝑐𝑠 = √(𝑙𝑥 − 𝑙𝑚)2 + (𝑎𝑥 −  𝑎𝑚)2 + (𝑏𝑥 − 𝑏𝑚)2 

 

𝑑𝑝 =  √(�̂�𝑥 − �̂�𝑚)2 + (�̂�𝑥 −  �̂�𝑚)2 

 

                         �̂� =  √(
𝑑𝑐𝑠

𝑁𝑐𝑠
)

2

+ (
𝑑𝑝

𝑁𝑝
)

2

                           (2) 

 

Where Ncs and Np are normalization to color and spatial 

proximity by their maximum distances within each cluster. 

The maximum spatial distance ‘Np’ estimated to the 

sampling period Sm =√𝑁/𝐾. The maximum color 

distance can vary from cluster to cluster so assumes its 

value assumes a constant m so eq. (2) can be written as eq. 

(3). 
 

                         �̂� =  √(
𝑑𝑐𝑠

𝑚
)

2

+ (
𝑑𝑝

𝑆
)

2

                            (3) 

 

It can simplify the actual distance measure which used in 

practice: 
 

                       𝐷𝑚 =  √(𝑑𝑐𝑠)2 + (
𝑑𝑝

𝑆𝑚
)

2

                          (4) 

 

The measurement of a distance ‘Dm’ finds the nearest 

center of the cluster for every pixel. While the estimated 

spatial level of the calculated superpixel is an area of 

estimated size Sm × Sm, exploration for the same pixels is 
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completed in an area of 2Sm ×2Sm around the center of 

each superpixel. When every pixel has been related to the 

nearest center of the cluster, a new step alters the centers of 

all clusters to the mean [l a b x  ̂y ̂ ]^T vector of entire pixels 

associating with the cluster. The L2 norm is applied to 

calculate a residual error E, this error is calculated between 

updated center positions of clusters and previous center 

positions of clusters. The allocation and update process can 

be iterated repeatedly until the error congregates. At last, a 

last step of post-processing is applied for connecting 

disjoint pixels by reassigning them to the nearest 

superpixels. 

B. Collecting Superpixel as a Sample for Unknown 

There are a number of superpixels, but in proposed 

algorithm neglected those superpixels that exist in both 

unknown and foreground regions and unknown and 

background regions. In trimap black portion indicates the 

background region (0 is for black), the White portion 

indicates the foreground region (255 is for Foreground) 

and the gray portion indicates the unknown region (128 is 

for gray) as shown in figure I. The distinction between pure 

foreground and background superpixels for samples as: 

 

L(i) == 128 ignore 

L(i) == 255 foreground samples  

L(i) == 0 background samples 

 

Where ‘L’ indicates the unique label of each superpixel ‘I’ 

of every pixel. In figure III violet color highlighted area 

shows superpixels having unknown regions along with 

foreground and background. Superpixels having both 

background and unknown regions magnificently are 

shown in figure IV. 

C. Selection of Best Superpixel using Centroid 

In this step selection of the best sample pair of superpixel 

for each unknown using region property 'centroid' is 

performed. Superpixel has the same type of pixels in it so 

the centroid of a superpixel has approximately the same 

properties as other pixels in the same superpixel. Then find 

the centroid of all superpixels having only background 

pixels as shown in figure V red dots or pixels showing the 

centroid of background superpixels. 

 

 
Figure III: Violet Color Showing Unknown Pixels, Neglecting 

Superpixels having Unknown 

 
Figure IV: Magnificent View of Superpixels Having Two Regions 

 

 
Figure V: Red Dots Showing Centroid of Pure Backgrounds 

 

Figure VI, blue dots or pixels showing the centroid of 

foreground superpixels. After finding centroids the next 

step is to find the nearest superpixels in the background 

and foreground for every unknown pixel ‘k’ using equation 

of Euclidean distance formula i.e., eq. (5). Every 

superpixel centroid ‘C’ and unknown pixel ‘U’ have their 

Cartesian Coordinates, for finding the nearest superpixel 

for each unknown pixel the distance is calculated for each 

unknown pixel ‘k’ to each background centroid ‘m’ and 

each foreground centroid ‘n’ where found minimum 

distances for both foreground and background update the 

unique labels of background and foreground superpixels 

separately.  
 

 
Figure VI: Blue Dots showing the Centroid of Pure Foreground's 

Superpixels 
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              𝐷 =  √(𝐶�́� − 𝑈�́�)2 + (𝐶�́� −  𝑈�́�)
2
                   (5) 

D. Optimizing of Alpha Matte 

After selecting the best superpixels ‘Lb’ of both 

background and foreground regions for each unknown 

pixel ‘k’, then select ‘n’ pixels from each selected 

superpixel as background color samples ‘Bm’ and 

foreground color samples ‘Fn’ for all unknown pixels’ ‘k’ 

with corresponding to their background and foreground 

superpixels. After that leading objective is to calculate the 

most favorable foreground and background set from the 

samples set. The best foreground and background pair sets 

for each unknown pixel ‘k’ are calculated using eq. (6). 

 
(𝛼_𝑘, 𝐹_𝑘, 𝐵_𝑘 ) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐶 −  [𝛼^𝑢 𝐹^𝑛 + (1 −

                                         𝛼^𝑢 ) 𝐵^𝑚 ]}                              (6) 

 
where ‘αu’ are different levels of alpha values starting from 

0 to 1 with an increment of 0.1, and ‘Bm’ and ‘Fn’ are 

background and foreground color samples for each 

unknown pixel ‘I’ respectively. The above equation i.e., eq. 

(6) gives the optimum result of alpha, foreground, and 

background for every value of unknown pixel ‘k’. 

 
 

Algorithm 1: Selection of the Best Superpixel 
 

 

1: / ∗ Initialization ∗ / 

2: Centroid values for all Background superpixels  

Cb(m) = [Cbx´ Cby´] 

3: Centroid values for all Foreground superpixels  

Cf(n) = [Cfx´ Cfy´] 

4: Pixel values for all unknown pixels  

 U(k) = [Ux´ Uy´]  

 where k = 1 x no. of unknown pixels 

5: Labels of all Superpixels L(i) 

6: for each unknown pixel k do 

7: Set df(k) = ∞ distance for each unknown pixel k 

to foreground 

8: Set db(k) = ∞ distance for each unknown pixel k 

to background 

9:    for each center of foreground superpixels Cf(n) 

do 
10:      Compute distance Db between 

𝐶𝑏(𝑚) 𝑎𝑛𝑑 𝑈(𝑘) 

11:       𝐷𝑏 =

√(𝐶𝑏𝑥(𝑚) − 𝑈𝑥(𝑘))2 − (𝐶𝑏�̂�(𝑚) − 𝑈�̂�(𝑘))
2
 

12:      if Db < db then 

13:              set db = Db 

14:              Lb(k,1) = L(Cb) 

15:      end if 

16:    end for 
17:    for each center of foreground superpixels Cf(n) 

do 
18:      Compute distance Df between Cf(n) and U(k) 

19:       𝐷𝑏 =

√(𝐶𝑓𝑥(𝑛) − 𝑈𝑥(𝑘))2 − (𝐶𝑓�̂�(𝑛) − 𝑈�̂�(𝑘))
2
 

20:       if Df < df then 

21:         set df = Df 

22:         Lb(k,2) = L(Cf) 

23:       end if 

24:     end for 

25: end for 
 

E. Smooth the Alpha Matte 

It is observed the quality of primarily estimated alpha matte 

needs additional improvement. This improvement can be 

done by a technique of matte optimization. Matting 

optimization considers correlation by calculating the 

relation among local pixels in neighboring regions. In this 

step matte optimization technique is applied as used in 

shared matting for further quality improvement of alpha 

matte as calculated using eq. (6).  In shared matting [18] 

optimization data terms and smoothness terms determine 

the cost function. Like in Closed form matting [19], earlier 

estimated values of ′𝛼′ along with the data term is used as 

smoothing term while matting Laplacian. The final 

optimum alpha is estimated as eq. (7). 

 
�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 �̂�𝜏𝐿𝑐 �̂� + 𝜆(�̂� − 𝛼)𝜏𝐷𝑔(�̂� − 𝛼) +

                               𝛾(�̂� − 𝛼)𝜏Γ (�̂� − 𝛼)                            (7) 

 
Where ‘λ’ is a parameter compared to the initially estimated 

alpha having a large weight while ‘γ’ is another constant 

parameter (10−1) and it shows the relative importance in 

terms of data and smoothness. ‘Dg’ is a matrix with 

diagonal values 1 and 0 for known and unknown pixels 

respectively. ‘Γ’ is another diagonal matrix with values 0 

and 1 for known and unknown pixels respectively. 

The confidence value ′�̃�′ is calculated for each unknown 

pixel which has been calculated in eq. (8), this value is 

related to the eq. (6) for the selected foreground ‘Fk’ and 

background ‘Bk’ set for every unknown pixel ‘k’. 

 
C ̃(F_(k , ) B_(k , ) α_(k ) ) = exp ((−(I −

           {α_(k ) F_(k ) + (1 − α_k ) B_k }))/(2σ^2 ))    (8) 

 
Where ‘αk’ and foreground and background pair values 

(Fk, Bk) are obtained in eq. (6) and ‘σ’ is a constant 

parameter and set to 0.1 for optimum alpha matte, different 

values of ‘σ’ are checked and found optimum result on 

σ=0.1.  

IV. RESULT AND EVOLUTION 

The proposed algorithm is tested and implemented on a 

range of images having different scene intricacies. The test 

set inclusive ground truth alpha matte is obtained from 

reference [6].  

The proposed method is tested and compared with five 

state-of-the-art image matting methods: 
 

1. Closed-form Matting (CF) [11],  

2. Robust Matting (RB) [16],  

3. Learning Based (LB) [37-39],  

4. KNN Matting (KNN) [12] and  

5. Shared Matting (SM) [18].  
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A. Qualitative Evaluation 

Five images from the given test data set are taken for 

qualitative measures and evaluation as shown in figure VII 

[16]. Images img_01, img_04 (doll), and img_02 (trolls) 

keep a simple background along with a complex 

foreground, image img_02 contains two connected objects 

in the foreground also having a large unknown region. 

These three images contain intricate structures like hairs. 

Better results were not produced by Closed Form and 

Learning Based as they included some of the background 

portions in the foreground. The proposed method produced 

better results as compared to others. Image img_03 (bear) 

is slightly simple as there is neither much color variation 

in the background nor intricate structures. The approach of 

shared matting and learning-based did not produce better 

results as they included little of the background portion in 

the foreground. The approach KNN matting produced 

results with less error and shared matting misclassified 

some portion of the caps buckle while the result produced 

by the proposed technique is found visibly near the Ground 

Truth. The last image img_05 contains sharp boundaries as 

shown in the broom caught by the toy other techniques 

produced misclassified alpha matte while the proposed 

method produced better. 

B. Quantitate Evaluation 

The proposed algorithm produced a good result as shown 

in figure VII. Visual representation is not adequately 

possible for difference error of estimated alpha with its 

magnitude in relation to the ground truth so the quantitative 

comparison is shown.  

 

 
Figure VII: MSE in Alpha Matte against the Ground Truth of Different 

Algorithms 
 

Table I represents the Mean Squared Error (MSE) of test 

images against the given ground truth in the dataset and 

Figure VIII shows a graphical representation of MSE.  

The mean square errors are calculated just for the unknown 

grey region and the obtained alpha value ranges from 0 to 

255. The Mean Square Error of eight images is mentioned 

in Table I.  

The MSE is calculated only for unknown pixels as in [16]. 

Although MSE is not always correlated to the visual matte 

quality; it still produces a sensible error comparison. The 

proposed technique produced optimum alpha mattes as 

shown in figure MSE indicating the MSE of images. 
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Figure VIII: Estimated Alpha Matte for Visual Comparison with Different Matting Algorithms 
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Table I: MSE in Alpha against the Ground Truth of Images Taken from 

Different Algorithms [6] 

 
CF 

[11] 

RB 

[23] 

LB 

[25] 

SM 

[8] 

KNN 

[3] 
Proposed 

Img_01 188 210 157 279 106 91.9 

Img_02 848 357 555 339 492 186.3 

Img_03 124 78.7 76.0 59.7 56.9 38.7 

Img_04 327 120.7 234 279 90.9 89.2 

Img_05 103 69.8 68.3 54.0 126 46.7 

Img_06 75.4 98.8 55.1 75.9 9.42 33.5 

Img_07 1564 492 771 133 588 340 

Img_08 508 850 407 421 109 336 

V. CONCLUSION 

The superpixel technique in image matting is used as the 

input of this work. Image matting using superpixel has not 

been inspected before, as per our knowledge. Superpixel 

centroid for the finest samples of background and 

foreground is used in this research. The suggested 

algorithm is used to acquire enhanced alpha mattes of 

complex images, as shown in qualitative and quantitative 

evolution on different and natural images. The efficiency 

and optimized performance of the proposed method is 

comparable to the standard image matting algorithm for 

textured and intricate boundaries. The work would be 

extended by applying preprocessing of trimap refinement 

to improve the results. In the future, the proposed work will 

be extended to a real-time array of images using machine 

and deep learning algorithms. 
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