
SSURJET

Sir Syed University Research Journal of Engineering & Technology

2023, Vol. 13, No. 1,

https://doi.org/10.33317/ssurj.561

Creative Common CC BY: This article is distributed under the terms of the Creative Commons Attributes 4.0 License.

It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

89

Exploring Virtual Machine Scheduling Algorithms:

A Meta-Analysis
Salman Mahmood1*, and Nor Adnan Yahaya1

1Department of Information Technology, Malaysia University of Science and Technology, Selangor, Malaysia

*Correspondence Author: Salman Mahmood (salman.mahmood@phd.must.edu.my)

Received February 04, 2023; Revised March 11, 2023; Accepted March 15, 2023

Abstract

This review paper provides a comprehensive assessment of scheduling methods for cloud computing, with an emphasis on optimizing

resource allocation in cloud computing systems. The PRISMA methodology was utilized to identify 2,487 articles for this comprehensive

review of scheduling methods in cloud computing systems. Following a rigorous screening process, 30 papers published between 2018 and

2023 were selected for inclusion in the review. These papers were analyzed in-depth to provide an extensive overview of the current state of

scheduling methods in cloud computing, along with the challenges and opportunities for improving resource allocation. The review evaluates

various scheduling approaches, including heuristics, optimization, and machine learning-based methods, discussing their strengths and

limitations and comparing results from multiple studies. The paper also highlights the latest trends and future directions in cloud computing

scheduling research, offering insights for practitioners and researchers in this field.

Index Terms: Heuristics-Based Scheduling, Optimization-Based Scheduling, Performance Optimization, Quality of Service (QoS),

Scheduling Algorithms.

I. INTRODUCTION

Cloud computing is defined in various ways in terms of

services with many definitions not encompassing all its

features. Key features include access to resources, OS,

remote desktop virtual machines, web services, and

databases [1].

Infrastructure as a service (IaaS) is a key service model of

cloud computing where task scheduling algorithms have a

direct impact on job performance and resource utilization.

Achieving load balancing through task scheduling in

virtual machines remains a challenge, but it is essential to

optimize resource utilization and ensure efficient job

execution.

Various task scheduling algorithms have been proposed in

cloud systems to balance the workload among resources

and virtual machines for optimal resource utilization and

execution time. As the number of cloud users increases, it

becomes challenging for Cloud Service Providers (CSPs)

to respond to all requests, making it necessary to use task

scheduling algorithms to minimize complexity [2].

Previous studies have explored different algorithms,

including memory storage management and multi-

objective task scheduling approaches that meet Service

Level Agreements (SLAs) in virtual systems. Cloud-Sim

has been used as a simulation tool to link code with

cloudlets, virtual machines, and data centers [3].

This study aims to provide a systematic literature review

of the role of task scheduling algorithms in optimizing

resource utilization in cloud systems. Specifically, this

review will analyze and evaluate existing research to

understand the concept of cloud computing, including

IaaS, and the various task-scheduling algorithms proposed

in cloud systems. The review will also identify the gaps in

the existing literature and suggest potential areas for

further research.

II. LITERATURE REVIEW

A. The Architecture of Cloud Computing Review

Cloud computing architecture has 7 key components:

application, client, network, platform, software, storage,

and energy consumption. It is made up of numerous

components that communicate through the application's

programming interface, typically a web service and a three-

tier architecture [4]. The architecture has two facets: a client

instance for the user and the cloud serving as the backend

for cloud software. The locations of servers, data storage

systems, and data centers make up the cloud's design. The

system is well-managed and more stable than its

predecessors. Figure I depicts the cloud's entire design as

shown below:

Figure I: Cloud Architecture as a Block Diagram

Cloud design has a layered architecture with four user

levels as shown in figure II. Each layer is independent and

Salman Mahmood et al,

90

only depends on the layer above for inputs. The middleware

contains frameworks of system software that allow users to

build and deploy code to the cloud provider. The client has

control over the provider's resources in this layer.

Figure II: Layered Architecture for Cloud Computing

B. Deployment Model

The National Institute of Standards and Technology (NIST)

defines four traditional cloud computing models or styles:

public, private, community, and hybrid [5]. These models

are responsible for maintaining systems and using system

funds based on the location of the hardware. The

deployment model for cloud computing is depicted in

figure III.

Figure III: Model for Cloud Computing Deployment

C. Scheduling in Virtual Machines

A vector-based scheduling strategy for a Virtual Machine

(VM) cloud environment was proposed [6]. It involves

generating permutations of tasks assigned to resources,

using a three-layer approach of platforms, infrastructure,

and application layers. A two-level virtual scheduling

model in a cloud environment where the user interacts with

the network via the application layer and can also use it to

develop new applications. In the first level of scheduling,

the user and the virtual machine are the parties involved,

while in the second level, the virtual machine and the host

assigned to it based on the first-level criteria are the parties

involved. The virtual machine is selected using First Come

First Serve (FCFS) scheduling and assigned to an under-

loaded physical machine, which is then increased with

active servers. The model is illustrated in figure IV below:

Figure IV: Model for Two-level Virtual Scheduling

A VM migration algorithm was proposed to provide quick

and fair migration [7]. It uses mathematical analysis to

demonstrate precision and aims to make efficient use of the

network with minimal migration. The algorithm has several

stages: initialization, allocation, checkpoints, and iterative

log.

In an article, a genetic algorithm-based VM placement

strategy was suggested to eliminate starvation [8]. The

strategy prioritizes VMs using the Least Square method to

determine fitness values and allocate higher priority to VMs

with higher values. A VM scheduling technique was

proposed for a Cloud environment to evenly distribute load

among all hosts, with low cost and high performance being

the primary goals [6]. The technique can be implemented in

static or dynamic mode for independent or dependent tasks,

respectively. The algorithm is compared to throttle and

round-robin algorithms. Figure V shows the classification

of VM scheduling:

Figure V: VM Scheduling Classification

D. Dependent and Independent Tasks

Tasks can be divided into independent tasks and dependent

tasks or workflow tasks based on their complexity.

Exploring Virtual Machine Scheduling Algorithms: A Meta-Analysis

91

Independent tasks don't require inter-task communication

and are prioritized in the planning phase. The planning

process of autonomous activities includes static and

dynamic algorithms, as shown in figure VI. Tasks can also

be categorized based on granularity as large seed and small

seed assignments.

Figure VI: Scheduling Algorithms Classification for Independent Tasks

E. Heuristics and Metaheuristics Scheduling Algorithm

A heuristic is a problem-solving technique that can be

successful in some cases and not in others. It's useful when

optimization is difficult or impossible. Heuristics are often

based on common sense or rules of thumb. A meta-

heuristic is a higher-level heuristic that is used when

information is limited or software capacity is insufficient.

It allows for assumptions from various fields and is more

relevant when an ideal solution is desired but machine

feasibility is questionable [9].

Metaheuristics can consider almost perfect alternatives in

comparison with other algorithms. Few algorithmic

methods can be confined only to the best possible local or

global optimum, but metaheuristic methods go beyond the

local maxima to the global maxima. A range of storm

optimization is introduced by various metaheuristic

techniques so that findings are based on randomly

produced variables [10].

F. Task Scheduling

Scheduling is essential for managing a large number of

requests in the cloud. It's challenging to schedule tasks and

allocate resources in the cloud, so an efficient scheduling

algorithm is necessary.

a) Static Mode:

Scheduling uses heuristics-based algorithms to schedule

independent tasks. The Balanced Minimum Completion

Time (BMCT) heuristic set has been suggested to improve

scheduling efficiency. It uses FCFS for initial allocation

and then balances the load between computers by

swapping tasks. BMCT is seen to have promising

outcomes compared to Dynamic Level Scheduling. Other

algorithms like Critical Path On a Processor (CPOP) and

Heterogeneous Earliest Finish Time (HEFT) are used in

heterogeneous settings.

b) Opportunistic Load Balancing (OLB):

It is a scheduling algorithm that aims to make all resources

or computers as busy as possible. Tasks are assigned

randomly to available machines without considering their

execution time. Opportunistic Load Balancing (OLB) is

easy to implement but may result in poor make-span as it

does not consider the execution time of tasks. The

efficiency of the OLB algorithm has been studied, with the

aim of assigning the chosen job to VMs that are available

and have the least load compared to other VMs. The

algorithm scales each VM's current load and selects the

VM with the minimum load to run the job [11].

c) Minimum Execution Time (MET) Algorithm:

It allocates tasks to virtual machines based on their

estimated best execution time, rather than their availability.

It seeks to assign the best machine for each task, leading to

potentially large load imbalances.

d) Minimum Completion Time (MCT) Algorithm:

It assigns tasks to VMs based on the shortest finishing

time. It can assign tasks in random order or based on

predictable processing time resources. A combination of

Minimum Completion Time (MCT) and the Minimum

Execution Time (MET) algorithm, called MECT, has been

recommended as a better scheduling technique in

heterogeneous computing systems with higher efficiency

in minimizing make-span compared to basic MCT and

MET algorithms.

e) Min-Min Heuristic:

It is an algorithm that assumes that assigning higher jobs

to the earliest and fastest executing devices, results in a

lower make-span. In the case where there are both short

and long tasks, the max-min algorithm may be used to

decrease the wait for longer tasks and result in a better

make-span and lower machine imbalance. An improved

Min-Min algorithm for cloud computing task scheduling

has been proposed to improve performance and

satisfaction of Quality of Service (QoS). The algorithm

prioritizes the earliest finishing tasks with the lowest

execution time and finds the best schedule. Another

variation, Mul-QoS-Min-Min, has been proposed that

considers resource and task resemblance, leading to

improved execution time and QoS satisfaction compared

to the traditional Min-Min algorithm [12]. A method of

hybrid scheduling consisting of Longest Job First and Min-

Min has been suggested to lower the make-span for work

scheduling in a diverse grid. The simulation results show

improved output as the make-span is reduced compared to

other methods. The Load Balancing Min-Min (LBMM)

approach has been revised for scheduling static tasks and

maximizing cloud computing resource usage [13].

f) Max-Min Heuristic:

It determines the quickest completion times for each task

using the Min-Min method and assigns tasks to an

overloaded machine with the maximum average

completion time. It performs better than the Min-Min

algorithm in scenarios where short and long tasks exist and

outperforms the Min-Min method when tasks are short.

Tasks with longer durations are assigned to machines in a

Salman Mahmood et al,

92

manner similar to the Min-Min method, and the cycle

repeats as tasks are scheduled [14].

g) Backfilling Algorithms:

A study of self-adaptive backfilling algorithms, for multi-

channel parallel devices, shows that the system's

predictions are better than the estimated runtime for

traditional backfilling [15]. The International Business

Machines Corporation (IBM) study demonstrates the

effectiveness of backfilling algorithms in parallel systems

and compares it to the commonly used FCFS technique for

job scheduling. It also considers the CONSERVATIVE

and EASY backfilling algorithms and their ability to shift

small jobs to fill gaps produced by FCFS. The study also

mentions that FCFS, along with backfilling algorithms, is

available for scheduling jobs in the backfilled queue [16].

G. Static-Metaheuristics-based Independent Task

Scheduling

a) Genetic Algorithm:

A study suggested an approach based on the first fit used

by cloud computing systems like Eucalyptus to solve the

starvation issue but lower task make-span [17]. The

technique fails to optimize resource utilization as tasks are

executed on every resource. A genetic algorithm approach

lays out provisions for a static instructions genetic set,

which considers the overall time of completion, average

task completion time, and cost considerations [18].

b) Simulated Annealing (SA):

It is a common heuristic method that uses a simulation

based on the physical annealing of strong metals. It is a

standard and probabilistic meta-algorithm for global

optimization problems. In [19], the Simulated Annealing,

Cuckoo Search Algorithm, and Firefly Algorithm were

used to find the best alternative for effective resource

utilization and the Firefly Algorithm outperformed the

other two methods in task scheduling [20].

c) Tabu Search (TS):

The hybrid flow-shop scheduling problem has been

researched as a Mixed-Integer Programming (MIP) model,

followed by a TS-based algorithm. The efficiency of

heuristics for flow-shop planning was evaluated, showing

that the best technique varies based on problem size,

required solution quality, and available time [19].

d) Gravitational Search Algorithm (GSA):

The modified GSA algorithm that combines GSA and

Particle Swarm Optimization (PSO) performs better in

terms of classification accuracy and choice capacity

compared to Support Vector Machine (SVM) or GSA-

SVM. It uses the concept of mass and gravity in task

scheduling, where particles act as agents with mass that

interact and move towards higher weight masses through a

gravity force. This results in improved performance [21].

The author presented a meta-heuristic optimization method

called GSA [22]. It was implemented for power system

economic operation, where it calculates the total generated

power in the internal area and the power borrowed from

different areas for the most economical load specification.

H. Dynamic Mode - Independent Tasks Scheduling

It is further possible that the algorithm of OLB, MCT, and

MET, are used for addressing the changes done in the

previous section for dynamic planning of the autonomous

assignments within the internet mode [55]. Other

algorithms included are the switching algorithm as k-

Percent Best (KPB).

a) Switching Algorithm (SA):

The SA algorithm uses MET and MCT heuristics

cyclically for load distribution among devices. MET

selects the best device for a task but can assign significant

tasks to similar devices, while MCT balances the load but

may not handle multiple jobs with different execution

times. If a job arrives randomly, MET balances the load at

a low cost and then MCT changes the load among devices.

b) K-Percent Best (KPB):

The Heuristic KPB assumes a subset of the work planning

devices, consisting of the best k devices based on task

completion time. A good k value would schedule the job

to a computationally superior machine. The aim is to

eliminate the practice of removing a device from the

current task account, leading to a shorter production time

than MCT.

I. Workflows or Dependent Task Scheduling

Figure VII shows categories of tasks dependent on

different scheduling algorithms. Dynamic and static

scheduling algorithms are used to schedule dependent

tasks [23].

Figure VII: Scheduling Algorithms Classification for Dependent Tasks

a) Static Mode:

Heuristic-based algorithms and directed random-search-

based algorithms are the two categories of static algorithms

for independent and selected jobs, which may result in

division, into three types: clustering heuristics, list

planning heuristics, and task duplication heuristics. A

study discussed a challenge with parallel constraints in

cloud IaaS scheduling, focused on energy efficiency [24].

The author proposed a parallel bi-objective hybrid genetic

algorithm that balances energy requirements and make-

span based on DVS to save energy. The NP-hard issue with

the heuristic-based approach leads to three classifications:

Exploring Virtual Machine Scheduling Algorithms: A Meta-Analysis

93

algorithms for lists, algorithms for clustering, and

algorithms based on task duplication.

b) List Scheduling Heuristics:

Tasks based on the specified graph are described by

objectives in the scheduling heuristics list and a structured

list of tasks is formed. Tasks are then selected based on

priorities and planned for the processor that minimizes the

cost function. Besides categorization, Modified Critical

Path (MCP), Mapping Heuristic (MH), Dynamic Level

Scheduling (DLS), Levelized-Min Time (LMT), Critical-

Path-On a Processor (CPOP), and Heteroge proposed a

method for dividing a large task into smaller tasks that can

be executed on multiple cloud VMs. They developed a

cost-efficient task scheduling approach by combining two

heuristic scheduling algorithms to list such tasks as DAG

(Direct Acyclic Graphs) [25].

c) Clustering Heuristics:

The use of clustering techniques for processors with an

unlimited number of processors. The method maps tasks in

a specified graph to clusters, which are refined in each

iteration by merging several clusters. The tasks in the same

cluster are assigned to the same processor. Examples of

clustering algorithms are Linear Clustering, Dominant

Sequence Clustering (DSC), Directed Mobility, and

Clustering and Scheduling (CASS) scheme.

d) Task Duplication Heuristic:

Task duplication algorithms aim to reduce coordination

overhead by grouping redundant tasks together. The

algorithms differ in task duplication selection strategy.

They are not as practical as other algorithms due to higher

time complexity. The different types of algorithms under

this heuristic include Critical Path to Quick Duplication,

Heuristic Duplication Bottom-up Top-Down, Heuristic

Duplication Scheduling, Next Reduction, and First

Duplication.

e) Dynamic Mode:

Researchers proposed a model for variation in VM

computing rate using normal distribution re-education

percentage [26]. It uses statistical models and tables to

calculate the normal or exponential distribution of

independent execution time and commute time. The

algorithm works on a wide range of computing algorithms

and reduces task delays by rescheduling tasks to faster

resources, but only after delays have occurred. Research

implements dynamic scheduling for a group of tasks with

different arrival rates [27]. The research in [28] defines

efficiency as the likelihood of completing a workflow

within a set time limit and avoiding exceeding period

restrictions. To fulfill SLA requirements, a proposal was

made to map customer and service provider requirements

in a QoS-aware workflow management and use a bi-

objective function for execution cost. The implementation

of a timeline-based workflow partitioning approach is

discussed by researchers [29]. Several publications suggest

using metaheuristic planning techniques, such as hybrid

GA, to reduce execution time and cost for improved

efficiency.

III. METHODOLOGY

A. Search Strategy

This article is a systematic literature review of cloud

computing scheduling methods. The authors searched

several databases for studies published between 2018-2023

that included keywords related to cloud computing

scheduling, such as Energy Efficiency, Heuristics-Based

Scheduling, Load Balancing, and Machine Learning-

Based Scheduling. The authors reviewed and included

only English-language articles that met their inclusion

criteria and used standardized methods and tools to extract

information from the articles. The inclusion and exclusion

factors are described in more detail in table I. Here table II

describes the search strategy of the research. The quality

of articles was assessed using the PRISMA checklist as

shown in figure VIII. The authors screened titles and

abstracts, retrieved potential articles, and screened full-text

articles for inclusion based on set criteria. The rest were

excluded.

Table I: Criteria (Including and Excluding)

Inclusion Justification

Published papers in 2018-
2023 in journals and

conference proceedings.

Use the most recent findings only

The paper presents the

Quality of Service (QoS)
associated with the cloud.

The review of measures for Quality of

Service (QoS) would evaluate the
various metrics used to assess the

performance of scheduling and load

balancing algorithms, such as response
time, throughput, and utilization.

Exclusion Justification

Papers, which are not in

the English language

The standardization of English as a

global language has been established.

Review papers, meta-

analyses, surveys, case

reports, comments, letters,
presentations/posters

presented at international

conferences.

Focus on original research.

Articles that have

redundant data.

Duplicate data has been ignored for

repetition.

Table II: Search Strategy of the Research

Searching Search Terms

Science Direct, Springer,

IEEE, Wiley, MDPI,
Hindawi, Inderscience and

IGI

1. Energy Efficiency

2. Heuristics-Based Scheduling
3. Load Balancing

4. Machine Learning-Based Scheduling

5. Optimization-Based Scheduling
6. Performance Optimization

7. Quality of Service (QoS)

8. Resource Management
9. Resource Utilization

10. Scalability

11. Scheduling Algorithms
12. Virtual Machines (VMs)

Strategy: #1 AND #2 AND #3 AND #4
AND #5 AND #6 AND #7 AND #8

AND #9 AND #10 AND #11 AND #12

Salman Mahmood et al,

94

Figure VIII: Flowchart for Article Screening and Selection

IV. DISCUSSION AND FINDINGS

VM scheduling in Cloud Computing (CC) has received

significant attention with several studies evaluating

different scheduling strategies based on factors such as

QoS, scalability, dependability, and cloud environment.

The studies break down scheduling strategies by

examining performance indicators such as SLA violation

and power utilization. Load balancers use scheduling

techniques to choose backend servers for virtual machine

requests and redistribute VMs for improved workload

distribution [30]. A study proposes a VM scheduling

technique that considers historical VM usage for improved

performance [31].

Cloud apps can quickly run out of memory without

efficient load balancing. A solution using file category

formatting for improved load balancing in CC with large

content is proposed. The most popular scheduling methods

in CC are listed in table III and use heuristics or

metaheuristics to create optimal routes for jobs to

accessible VMs, which cannot be achieved in a set time

using traditional deterministic methods [32].

The purpose of this systematic literature review is to

identify the cloud computing scheduling methods based on

the QoS measures.

Table III: Cloud Computing Scheduling Methods

Mechanisms Used Measures for QoS
Technology for

Performance Evaluation
Merits Demerits

Scheduling- Load

Balancing [33]
Review CloudSim Emerging domains detected Fundamental review

Metaheuristic [34] Response Time, Cost CloudSim
Reliable, Cost and

Response time reduced

Higher computation costs,

fewer services available

Scheduling-Energy

Aware [35]
Execution Time, Energy CloudSim

Resource utilization and

energy efficiency are

improved, and execution

time is reduced

There are limitations on the

volume of work and the

process deadlines

Scheduling- Load
Balancing [36]

Response Time, Cost CloudSim
Lower cost, Decreased

Response Time

The number of tasks and

their complexity are not

discussed

Framework for Resource
Provisioning [37]

Response Time and Cost CloudSim
Accuracy and reduced cost

and response time

Throughput and energy

efficiency characteristics

are not covered

System for Controlling
Elasticity [38]

Response time, elasticity,
and resource utilization

CloudSim

Elasticity, lower response

time, and higher resource

utilization

Issues with Scalability

MFO-based Scheduling
[39]

Execution Time, Makespan iFogSim
Reduced execution time

and duration

Scalability is not well

proven because fewer nodes

are used

BWM-VIKOR-based
Scheduling [40]

Utilization of VM,
Throughput Time,

Makespan

CloudSim
Increased VM usage,

decreased makespan, and

increased throughput

Fewer virtual machines and
duties

BWM-TOPSIS-based

Scheduling [41]

Utilization of Resource,
Makespan, Energy

Consumption

CloudSim
Higher VM utilization,
Decreased Makespan,

Better energy consumption

Reliability challenges,
small scale data centers c

Considered

DVFS-PL-based
Scheduling [42]

SLA Violation, Execution
Time

CloudSim
Minimum SLA violation,

Minimized Execution Time
More number of VMs need

to be considered

Provisioning of

Resources [43]

Utilization of Resources,

Cost, Response Time
CloudSim

Minimized cost and

Response Time

Wide-ranging user needs

were not taken into account

MOB and BAT-LBRC
Scheduling [44], and

[45]

Accuracy, Efficiency,
merging clusters, Decision

Making

CloudSim

More accurate and efficient,

similar clusters

Mergers, improved decision
making.

Response time and

throughput aren't addressed,

and scalability issues are
present.

System for PLB-HDD

Optimization [46]

Cost of Execution,

Makespan
CWS

Decreased execution costs,

improved timeliness

Scalability issues and the

utilization of fewer virtual
machines

AEFS-WOA and CSO-

IRRO Scheduling [47],

and [48]

Convergence, Execution

Time, Throughput Time,

Response Time

CloudSim

Reduced response,

execution, and throughput
times and faster

convergence

Decision-making capability

was constrained by a lack
of scalability and the usage

of fewer datasets

Exploring Virtual Machine Scheduling Algorithms: A Meta-Analysis

95

Mechanisms Used Measures for QoS
Technology for

Performance Evaluation
Merits Demerits

TGA-EHO Scheduling

[49]

Consistency, Location

Search, Accuracy
CloudSim

Better accuracy and
consistency, faster location

search

Lesser number of nodes is

considered

SA-HHO Scheduling

[50]

Scheduling of jobs,

makespan
CloudSim

Better job scheduling,

shorter lead times

Lesser jobs and QoS

metrics are considered

EELBP Scheduling [51]
Energy Use, Reaction, and

Calculation Time
Eucalyptus

Computation time is

decreased while response

time and energy use are
enhanced

Scalability problems; ML

technique not employed

ICSO Scheduling [52]
F-Measures, CEC Function,

Clustering Issues
MATLAB

Clustering and CEC

functions have been

improved

There is no mention of

energy consumption,
response time, or

throughput

Metaheuristic Hybrid

Algorithm [53]

Makespan, Throughput,

execution time
CloudSim

Lower makespan, Increased
throughput, better execution

time

Concerns about energy use

were overlooked

PSO Scheduling [54] Execution Time, Accuracy Google Cloud Higher efficiency Lower accuracy prediction

SLA-Aware Load
Balancing: Scheduling

[55]

Energy Consumption,

Migration Time
MATLAB

Lesser migration time,
improved energy

consumption

Execution time and
throughput are not

discussed

SLA-Agile Dependent
VM Scheduling [56]

SLA violations CloudSim Reduce SLA Violations
There are no QoS metrics

available

Vanet Optimization-

Metaheuristic [57]
Network overhead, Energy NS2

Decreased overhead,

improved consumption of
energy

Degradation of

performance, increased cost
of computations

MPSO- Scheduling [58]
Utilization of Resources,

Task overhead
CloudSim

Higher Resource utilization
reduced task overhead

Scalability is not addressed,

and a lower number of VMs

and jobs are evaluated

MLP-ABC Scheduling

[59]
Accuracy CloudSim NSL-KDD

Improved Kappa Value,

MAE and RMSE

Apart from accuracy, QoS
measures have not been

confirmed

Straggler Prediction and

Mitigation Technique

(START) [60]

Violation rate and
execution time

CloudSim

Reduction in response time,

Fewer SLA violations, and
Efficient resource

utilization

There are no QoS metrics
available

Current load balancing techniques in cloud computing

include Round Robin, Weighted Round Robin, Least

Connections, Weighted Least Connections, IP Hash, and

Domain Name System (DNS) load balancing. However,

these load-balancing techniques have limitations that can

impact cloud performance. For example, Round Robin and

Weighted Round Robin may not distribute the load evenly

and may not consider server capacity. Least Connections

and Weighted Least Connections may not consider the

location of the requesting client or the location of the

servers. IP Hash may not work well for large-scale

systems, and DNS load balancing may be slow to respond

to changes in server availability. Load balancing can

impact cloud performance by affecting response time,

throughput, and resource utilization. Poor load balancing

can lead to the overloading of some servers while others

remain underutilized, resulting in reduced performance

and potential service disruption.

To address load balancing challenges in cloud computing,

several potential solutions have been proposed based on

QoS, including:

• Dynamic Load Balancing: dynamically adjust

server allocation based on real-time workload and

resource utilization to optimize QoS.

• Machine Learning-Based Load Balancing: use

machine learning algorithms to predict future

workload and resource usage and make load

balancing decisions accordingly.

• Cloud Orchestration: use an automated

orchestration system to manage resources and

allocate workloads based on QoS criteria.

• Hybrid Load Balancing: combine multiple loads

balancing techniques to achieve optimal load

balancing based on QoS requirements.

Overall, load balancing plays a crucial role in ensuring

optimal performance and reliability in cloud computing,

and ongoing research is focused on developing more

efficient and effective load-balancing techniques to

address the evolving needs of cloud computing.

The implications of this study are significant for both

researchers and practitioners in the field of cloud

computing. By analyzing the current state-of-the-art task

scheduling algorithms in cloud computing systems, this

study provides insights into the strengths and weaknesses

of existing methods and identifies potential areas for

improvement.

Researchers can use the findings of this study to develop

more effective task-scheduling algorithms that can further

optimize resource utilization in cloud computing systems.

Additionally, the study highlights the need for further

research on the application of metaheuristic algorithms to

cloud computing systems, which could potentially lead to

more efficient task-scheduling methods.

Salman Mahmood et al,

96

Practitioners in the field of cloud computing can benefit

from the insights provided by this study by gaining a

deeper understanding of the role of task-scheduling

algorithms in optimizing resource utilization. They can use

this knowledge to make informed decisions about the

selection and implementation of task scheduling

algorithms in their own cloud computing systems,

ultimately leading to improved performance and cost

savings.

V. RECOMMENDATION

The private cloud is a system that allows you to store data

privately. The CC environment is made up of Eucalyptus.

Eucalyptus supports a variety of hypervisors and Linux

operating systems [61], and [62], and it is made up of five

essential components: Examples of cloud regulators

include the Cloud Regulator, Cluster Regulator, Node

Regulator, Walrus, and Storage Regulator. Major

scheduling choices are made by cloud regulators, who also

communicate demands to cluster regulators. It is in charge

of virtualized resource management. The cluster regulator

manages VM instances and plans VM execution on

explicit nodes. The cluster regulator and storage regulator

work together. Virtual machines are started and stopped by

the node regulator. When it comes to cloud VM

scheduling, Round Robin (RR), Greedy, or Power Save

strategies are employed by Eucalyptus. With one VM

routinely assigned to each host, the RR VM scheduling

strategy prioritizes equally distributing loads across all

hosts.

Before connecting with the next VM to establish a

connection with the next host, the scheduler assigns virtual

machines to each host. Each host goes through this process

until at least one virtual machine is present on each. The

RR approach for VM scheduling has the main advantage

of making fair use of all available resources. All hosts are

given an equal number of VMs to guarantee that

everything is in order. The use of the RR technique for VM

scheduling has the significant disadvantage of increasing

power consumption because several hosts will be turned

on for an extended period of time. A Greedy VM selects

the first node that can meet the underlying requirements.

As a result, although Greedy's power consumption is

lower, load balancing is not achieved. In comparison to

these two, the PowerSave approach for VM scheduling

saves more electricity.

Open Nebula, another standalone cloud, supports a variety

of hypervisors and operating systems and includes

components including a front-end, hosts with hypervisor

support, data stores, service networks, and virtual machine

networks [63]. For cloud VM scheduling, Open Nebula

employs a Match Making approach. The matchmaking

technique prioritizes VM allocation to hosts with high-

ranking expressions, which is important when using

strategies like striping, packing, and load-aware rules.

Several authors sought to reduce switching times in CC by

using parallel [64], and [65] approaches.

The OpenStack cloud includes computing, a dashboard,

block, and object storage, identity services, a database, and

image services [66]. For internal communication, the

OpenStack cloud components employ the RMQ Protocol.

The VMs in the Nova Computing Node hosts are

scheduled using the Filter scheduling method that makes

use of a weighing process and filtering. To filter compute

node hosts, filter settings would be utilized. Based on the

filtered hosts, a weighing operation will begin. Table IV

compares the Eucalyptus, OpenStack, and Open Nebula

clouds' VM scheduling techniques.

Table IV: Search Strategy of the Research

Cloud

Environments

Techniques for VM

Scheduling
Important Properties

OpenStack
Filter Scheduling

Algorithm
Based on Memory

Awareness

Open Nebula
Algorithm for finding

matches

Efficiency in Terms of

Costs

Eucalyptus

Round Robin

Algorithm

Efficiency in Terms of

Time

PowerSave Algorithm Saves Electricity

Greedy Algorithm
Power Usage is

Reduced

The study in reference [67] describes an IDS framework

with various IDS sensors placed throughout the virtual

infrastructure. Each sensor monitors a virtual component

and the central management unit oversees all sensors,

combining and correlating alarms. The central

management unit has four parts: Event Gatherer, Event

Database, Analysis Controller, and IDS Remote Controller

as shown in figure IX. The Event Gatherer collects and

archives alerts, the Analysis Controller uses correlation to

detect multi-event attacks, and the IDS Remote Controller

manages the configuration and lifespan of each IDS sensor.

Figure IX: Cloud IDS architecture [67]

Multiple IDS sensor types but lacks consideration for the

dynamic nature of virtual infrastructure. It does not address

the issue of VM migration and sensor adaptation to

changes, such as new services in the VMs. Another

approach in reference [68] places network-based IDS

sensors next to computing nodes in IaaS to reduce DoS

incidents but still has limitations, such as the need for IDS

reconfiguration and handling unexpected traffic increases.

The approach supports only network-based IDSs, unlike

the variety of IDSs in [67].

Livewire is an inactive [69], early Virtual Machine

Introspection or VMI-based intrusion detection system that

utilizes the hypervisor qualities of isolation, inspection,

and interposition for strong isolation and host-based

visibility. Figure X shows its architecture.

Exploring Virtual Machine Scheduling Algorithms: A Meta-Analysis

97

Figure X: Structure of Livewire

Livewire is an intrusion detection system using Virtual

Machine Introspection (VMI) approaches. It uses three

hypervisor qualities of isolation, inspection, and

interposition to create strong isolation from malicious

attackers while keeping the visibility of a host-based IDS.

The architecture of Livewire includes an OS interface

library, which bridges the semantic gap by translating

hardware events into OS-level structures, and a policy

engine, which determines if the system has been corrupted.

The prototype was tested on a VMware workstation, but it

has limitations including the inability to manage dynamic

events in a cloud environment, lack of adaptation to new

services added to the virtual machine, and support for only

one virtual machine per IDS.

CloudSec aims to provide active monitoring of several

collocated VMs without putting any sensitive code inside

the untrusted VMs. [70] used VMI to identify kernel data

rootkits by creating dynamic guest kernel data structures.

Instead of direct access to the memory pages of the VMs,

it interacts with the hypervisor and stores the pertinent

pages in a unique memory page buffer. A specialty module

is required for CloudSec (KDS) to load information about

the OS kernel data structures of the VMs. The Semantic

Gap Builder (SGB) narrows the semantic gap and

generates a profile of the monitored VM.

Figure XI: Architecture for CloudSec [70]

The Defense Modules, which perform the actual detection,

use the profile. The architecture of CloudSec is shown in

figure XI.

Although CloudSec permits concurrent active monitoring

of several VMs, its performance costs in a multi-tenant

context have not been studied. Furthermore, turning off an

infected VM is the extent of the active monitoring

capabilities. CloudSec is only compatible with the

VMware ESXi hypervisor and does not address dynamic

events.

We modify NIDSs to account for the dynamic shifts in a

cloud context, ensuring that network traffic traveling to

and from the information system housed in the cloud is

properly monitored. Our contribution deals with the

adaptation-related concerns that the earlier-presented

solutions neglect to address.

This list of firewall options for cloud settings includes

cloud-specific firewalls. We concentrate on industrial

solutions because developing fresh cloud firewall solutions

or enhancing existing ones requires a lot of work. Our

emphasis is divided between firewalls for apps and

firewalls for the future. Future-Generation Firewalls One

of the most significant cyber hazards to a cloud

environment is large-scale distributed assaults, which

cause several security incidents at different levels of a

cloud architecture. One way to stop these assaults is by

integrating a next-generation firewall into the cloud

architecture. Deep packet inspection for network traffic

analysis, access control for online apps that are user-

focused, and access control for Internet applications that

are application-focused are just a few of the features that

the future generation of firewalls will be able to execute in

one device.

VMware and Palo Alto Networks have partnered to create

VMSeries, a next-generation firewall with application-

driven access management and the ability to dynamically

adjust security policies [71]. The firewall includes a new

feature, "tags", which allow security rules based on VM

attributes. The system integrates with the NSX security

suite and provides access to network traffic and topology

data, but does not allow component sharing among tenants

and does not account for tenant-specific security

requirements. The VMSeries is linked to Amazon EC2.

Application-level firewalls have emerged as a solution for

monitoring network traffic caused by specific applications.

These firewalls filter network packets based on rules that

consider the protocols and states of the relevant apps.

Implementing this solution for web apps in a cloud

environment provides defense against recognized

application-level dangers like SQL injection or cross-site

scripting [72]. Amazon Web Application Firewall (WAF)

is available to tenants who can create custom security

policies based on their hosted apps and use load balancers

to implement the rules. Tenants have a lot of latitudes to

customize the ruleset, but dynamic events are not

considered by the WAF and it's unclear if component

sharing is possible for rules from multiple tenants.

VI. CONCLUSION

In summary, cloud computing is a multifaceted concept

that incorporates various services, with IaaS being a key

feature that includes remote desktop VMs, web services,

and databases. Task scheduling algorithms play a

significant role in optimizing resource utilization and

balancing the workload among resources and VMs.

However, achieving optimal resource utilization and

execution time is challenging, necessitating a multi-

Salman Mahmood et al,

98

objective task scheduling approach that adheres to SLAs.

Researchers have proposed algorithms for task scheduling

in IaaS and used simulation tools like Cloud-Sim.

Additionally, CSPs offer low-cost storage services on a

pay-per-use basis, making cloud computing an attractive

option for managing and providing computing

applications. The private cloud is a system for storing data

privately, with Eucalyptus being a CC environment with

five components. Eucalyptus uses Round Robin, Greedy,

or Power Save strategies for cloud VM scheduling.

Similarly, Open Nebula and OpenStack use Match Making

and Filter scheduling methods, respectively. Table IV

provides a comparison of VM scheduling techniques used

by these standalone clouds.

Various firewall options for cloud environments, with a

focus on industrial solutions. The three options reviewed

include Next-Generation Firewalls, Application-level

Firewalls, and CloudSec. Next-Generation Firewalls

provide deep packet inspection and access control, but the

VMSeries firewall has limitations such as a lack of

component sharing among tenants and not accounting for

tenant-specific security requirements. Application-level

firewalls, such as Amazon Web Application Firewall, offer

protection against specific application-level dangers, but

dynamic events are not considered, and it remains unclear

if component sharing is possible for rules from multiple

tenants. CloudSec allows for concurrent active monitoring

of VMs, but its performance cost in a multi-tenant context

has not been studied, and it only turns off infected VMs as

a response. Future research could focus on modifying

Network Intrusion Detection Systems to account for

dynamic changes in cloud environments and improve the

security of cloud systems.

Acknowledgment

The authors would like to thank the management of

Malaysia University of Science and Technology, Selangor,

Malaysia, for their support and their assistance throughout

this study.

Authors Contributions

Both authors equally contribute to achieve the objectives

of this research study.

Conflict of Interest

The authors declare no conflict of interest and confirm that

this work is original and not plagiarized from any other

source, i.e., electronic or print media. The information

obtained from all of the sources is properly recognized and

cited below.

Data Availability Statement

The testing data is available in this paper.

Funding

This research received no external funding.

References

[1] Al Hasani, I. M. M., Kazmi, S. I. A., Shah, R. A., Hasan, R., &
Hussain, S. (2022). IoT based Fire Alerting Smart System. Sir Syed

University Research Journal of Engineering & Technology, 12(2),
46-50.

[2] Chawla, Y., & Bhonsle, M. (2012). A study on scheduling methods
in cloud computing. International Journal of Emerging Trends &
Technology in Computer Science (IJETTCS), 1(3), 12-17.

[3] Madni, S. H. H., Abd Latiff, M. S., Abdullahi, M., Abdulhamid, S.
I. M., & Usman, M. J. (2017). Performance comparison of heuristic
algorithms for task scheduling in IaaS cloud computing
environment. PloS one, 12(5), e0176321.

[4] Smanchat, S., & Viriyapant, K. (2015). Taxonomies of workflow
scheduling problem and techniques in the cloud. Future Generation
Computer Systems, 52, 1-12.

[5] Mell, P., & Grance, T. (2011). The NIST definition of cloud
computing. Retrieved from:
https://csrc.nist.gov/publications/detail/sp/800-145/final

[6] Mishra, N. K., & Mishra, N. (2016). CELBT: An Algorithm for
Efficient Cost based Load Balancing in Cloud Environment.
International Journal of Computer Applications, 134(1).

[7] Liu, J., Pacitti, E., Valduriez, P., & Mattoso, M. (2015). A survey of
data-intensive scientific workflow management. Journal of Grid
Computing, 13, 457-493.

[8] Pilavare, M. S., & Desai, A. (2015, March). A novel approach
towards improving performance of load balancing using genetic
algorithm in cloud computing. In 2015 International Conference on
Innovations in Information, Embedded and Communication
Systems (ICIIECS) (pp. 1-4). IEEE.

[9] Mandal, T., & Acharyya, S. (2015, December). Optimal task
scheduling in cloud computing environment: meta heuristic
approaches. In 2015 2nd International Conference on Electrical
Information and Communication Technologies (EICT) (pp. 24-28).
IEEE.

[10] Rubrico, J. I. U., Ota, J., Higashi, T., & Tamura, H. (2008).
Metaheuristic scheduling of multiple picking agents for warehouse
management. Industrial Robot: An International Journal, 35(1), 58-
68.

[11] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-
effective and low-complexity task scheduling for heterogeneous
computing. IEEE transactions on parallel and distributed systems,
13(3), 260-274.

[12] Wang, G., & Yu, H. C. (2013). Task scheduling algorithm based on
improved Min-Min algorithm in cloud computing environment. In
Applied Mechanics and Materials (Vol. 303, pp. 2429-2432). Trans
Tech Publications Ltd.

[13] Tsai, C. W., Huang, W. C., Chiang, M. H., Chiang, M. C., & Yang,
C. S. (2014). A hyper-heuristic scheduling algorithm for cloud.
IEEE Transactions on Cloud Computing, 2(2), 236-250.

[14] Devipriya, S., & Ramesh, C. (2013, December). Improved max-min
heuristic model for task scheduling in cloud. In 2013 international
conference on green computing, communication and conservation
of energy (ICGCE) (pp. 883-888). IEEE.

[15] Barry, D. K., & Dick, D. (2013). Web Services, Service-Oriented
Architectures, and Cloud Computing: The Savvy Manager's Guide.

[16] Tsafrir, D., Etsion, Y., & Feitelson, D. G. (2007). Backfilling using
system-generated predictions rather than user runtime estimates.
IEEE Transactions on Parallel and Distributed Systems, 18(6), 789-
803.

[17] Brent, R. P. (1989). Efficient implementation of the first-fit strategy
for dynamic storage allocation. ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(3), 388-403.

[18] Fang, Y., Wang, F., & Ge, J. (2010). A task scheduling algorithm
based on load balancing in cloud computing. In Web Information
Systems and Mining: International Conference, WISM 2010, Sanya,
China, October 23-24, 2010. Proceedings (pp. 271-277). Springer
Berlin Heidelberg.

[19] Voß, S., & Fink, A. (2012). Hybridizing reactive tabu search with
simulated annealing. In Learning and Intelligent Optimization: 6th
International Conference, LION 6, Paris, France, January 16-20,
2012, Revised Selected Papers (pp. 509-512). Springer Berlin
Heidelberg.

[20] Miao, Y. (2014). Resource scheduling simulation design of firefly
algorithm based on chaos optimization in cloud computing.
International Journal of Grid and Distributed Computing, 7(6),
221-228.

Exploring Virtual Machine Scheduling Algorithms: A Meta-Analysis

99

[21] Gu, B., & Pan, F. (2013). Modified gravitational search algorithm
with particle memory ability and its application. International
Journal of Innovative Computing, Information and Control, 9(11),
4531-4544.

[22] Roy, P. K. (2013). Solution of unit commitment problem using
gravitational search algorithm. International Journal of Electrical
Power & Energy Systems, 53, 85-94.

[23] Durillo, J. J., Prodan, R., Camarasu-Pop, S., Glattard, T., & Suter,
F. (2014). Bi-objective workflow scheduling in production clouds:
Early simulation results and outlook. Retrieved from: https://e-
archivo.uc3m.es/handle/10016/21872

[24] Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y. C., Talbi, E. G.,
Zomaya, A. Y., & Tuyttens, D. (2011). A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems. Journal of Parallel and Distributed
Computing, 71(11), 1497-1508.

[25] Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., & Wang, J. (2013).
Cost-efficient task scheduling for executing large programs in the
cloud. Parallel Computing, 39(4-5), 177-188.

[26] Yi, S., Wang, Z., Ma, S., Che, Z., Liang, F., & Huang, Y. (2010,
June). Combinational backfilling for parallel job scheduling. In
2010 2nd International Conference on Education Technology and
Computer (Vol. 2, pp. V2-112). IEEE.

[27] Bansal, N., Awasthi, A., & Bansal, S. (2016). Task Scheduling
Algorithms with Multiple Factor in Cloud Computing Environment.
Information Systems Design and Intelligent Applications, 619.

[28] Poola, D., Garg, S. K., Buyya, R., Yang, Y., & Ramamohanarao, K.
(2014, May). Robust scheduling of scientific workflows with
deadline and budget constraints in clouds. In 2014 IEEE 28th
international conference on advanced information networking and
applications (pp. 858-865). IEEE.

[29] Arabnejad, H., & Barbosa, J. G. (2015, October). Multi-workflow
QoS-constrained scheduling for utility computing. In 2015 IEEE
18th International Conference on Computational Science and
Engineering (pp. 137-144). IEEE.

[30] Rekha, S., & Kalaiselvi, C. (2019). Review of Scheduling
Methodologies of Virtual Machines (VMs) In Heterogeneous Cloud
Computing. International Journal of Scientific & Technology
Research, 8(09).

[31] Sotiriadis, S., Bessis, N., & Buyya, R. (2018). Self managed virtual
machine scheduling in cloud systems. Information Sciences, 433,
381-400.

[32] Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I. A., &
Alhakami, H. (2020). A hybrid model for load balancing in cloud
using file type formatting. IEEE Access, 8, 118135-118155.

[33] Tiwari, P. K., Rani, G., Jain, T., Mundra, A., & Gupta, R. K. (2019).
Load Balancing in Cloud Computing. Critical Approaches to
Information Retrieval Research, 294.

[34] Ghobaei-Arani, M., Rahmanian, A. A., Aslanpour, M. S., & Dashti,
S. E. (2018). CSA-WSC: cuckoo search algorithm for web service
composition in cloud environments. Soft Computing, 22(24), 8353-
8378.

[35] Safari, M., & Khorsand, R. (2018). Energy-aware scheduling
algorithm for time-constrained workflow tasks in DVFS-enabled
cloud environment. Simulation Modelling Practice and Theory, 87,
311-326.

[36] Hamdani, M., Aklouf, Y., & Chaalal, H. (2020, June). A
Comparative Study on Load Balancing Algorithms in Cloud
Environment. In Proceedings of the 10th International Conference
on Information Systems and Technologies (pp. 1-4).

[37] Ghobaei-Arani, M., Khorsand, R., & Ramezanpour, M. (2019). An
autonomous resource provisioning framework for massively
multiplayer online games in cloud environment. Journal of Network
and Computer Applications, 142, 76-97.

[38] Ghobaei-Arani, M., Souri, A., Baker, T., & Hussien, A. (2019).
ControCity: an autonomous approach for controlling elasticity
using buffer Management in Cloud Computing Environment. IEEE
Access, 7, 106912-106924.

[39] Ghobaei‐Arani, M., Souri, A., Safara, F., & Norouzi, M. (2020). An
efficient task scheduling approach using moth‐flame optimization
algorithm for cyber‐physical system applications in fog computing.
Transactions on Emerging Telecommunications Technologies,
31(2), e3770.

[40] Rafieyan, E., Khorsand, R., & Ramezanpour, M. (2020). An
adaptive scheduling approach based on integrated best-worst and
VIKOR for cloud computing. Computers & Industrial Engineering,
140, 106272.

[41] Khorsand, R., & Ramezanpour, M. (2020). An energy‐efficient
task‐scheduling algorithm based on a multi‐criteria decision‐
making method in cloud computing. International Journal of
Communication Systems, 33(9), e4379.

[42] Safari, M., & Khorsand, R. (2018). PL-DVFS: combining Power-
aware List-based scheduling algorithm with DVFS technique for
real-time tasks in Cloud Computing. The Journal of
Supercomputing, 74, 5578-5600.

[43] Khorsand, R., Ghobaei‐Arani, M., & Ramezanpour, M. (2019). A
self‐learning fuzzy approach for proactive resource provisioning in
cloud environment. Software: Practice and Experience, 49(11),
1618-1642.

[44] Strumberger, I., Tuba, E., Bacanin, N., Beko, M., & Tuba, M.
(2020). Modified and hybridized monarch butterfly algorithms for
multi-objective optimization. Advances in intelligent systems and
computing (923), pp. 449–458. Springer International Publishing.

[45] Adhikari, M., Nandy, S., & Amgoth, T. (2019). Meta heuristic-
based task deployment mechanism for load balancing in IaaS cloud.
Journal of Network and Computer Applications, 128, 64-77.

[46] Kaur, A., & Kaur, B. (2022). Load balancing optimization based on
hybrid Heuristic-Metaheuristic techniques in cloud environment.
Journal of King Saud University-Computer and Information
Sciences, 34(3), 813-824.

[47] Strumberger, I., Bacanin, N., Tuba, M., & Tuba, E. (2019).
Resource scheduling in cloud computing based on a hybridized
whale optimization algorithm. Applied Sciences, 9(22), 4893.

[48] Torabi, S., & Safi-Esfahani, F. (2018). A dynamic task scheduling
framework based on chicken swarm and improved raven roosting
optimization methods in cloud computing. The Journal of
Supercomputing, 74(6), 2581-2626.

[49] Attiya, I., Abd Elaziz, M., & Xiong, S. (2020). Job scheduling in
cloud computing using a modified harris hawks optimization and
simulated annealing algorithm. Computational intelligence and
neuroscience, 2020.

[50] Li, C., Li, J., Chen, H., & Heidari, A. A. (2021). Memetic Harris
Hawks Optimization: Developments and perspectives on project
scheduling and QoS-aware web service composition. Expert
Systems with Applications, 171, 114529.

[51] Patel, D., Gupta, R. K., & Pateriya, R. K. (2019). Energy-aware
prediction-based load balancing approach with VM migration for
the cloud environment. Data, Engineering and Applications:
Volume 2, 59-74.

[52] Kumar, Y., & Singh, P. K. (2018). Improved cat swarm
optimization algorithm for solving global optimization problems
and its application to clustering. Applied Intelligence, 48, 2681-
2697.

[53] Anwar, N., & Deng, H. (2018). A hybrid metaheuristic for multi-
objective scientific workflow scheduling in a cloud environment.
Applied sciences, 8(4), 538.

[54] Zhong, W., Zhuang, Y., Sun, J., & Gu, J. (2018). A load prediction
model for cloud computing using PSO-based weighted wavelet
support vector machine. Applied Intelligence, 48, 4072-4083.

[55] Ashouraei, M., Khezr, S. N., Benlamri, R., & Navimipour, N. J.
(2018, August). A new SLA-aware load balancing method in the
cloud using an improved parallel task scheduling algorithm. In 2018
IEEE 6th international conference on future internet of things and
cloud (FiCloud) (pp. 71-76). IEEE.

[56] Sharma, N., & Maurya, S. (2019, February). SLA-based agile VM
management in cloud & datacenter. In 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon) (pp. 252-257). IEEE.

[57] Toutouh, J., & Alba, E. (2015). Metaheuristics for energy-efficient
data routing in vehicular networks. International Journal of
Metaheuristics, 4(1), 27-56.

[58] Mohanty, S., Patra, P. K., Ray, M., & Mohapatra, S. (2018). A
Novel Meta-Heuristic Approach for Load Balancing in Cloud
Computing. International Journal of Knowledge-Based
Organizations (IJKBO), 8(1), 29-49.

Salman Mahmood et al,

100

[59] Hajimirzaei, B., & Navimipour, N. J. (2019). Intrusion detection for
cloud computing using neural networks and artificial bee colony
optimization algorithm. ICT Express, 5(1), 56-59.

[60] Tuli, S., Gill, S. S., Garraghan, P., Buyya, R., Casale, G., &
Jennings, N. (2021). START: Straggler prediction and mitigation
for cloud computing environments using encoder lstm networks.
IEEE Transactions on Services Computing.

[61] Mathew, M. (2018). Virtualization and Scheduling In Cloud
Computing Environment – A Study. IOSR Journals 20(4), pp. 23–
32.

[62] Varma, N. M. K., & Choi, E. (2016). Study and comparison of
virtual machine scheduling algorithms in open source clouds. In
Advanced Multimedia and Ubiquitous Engineering: FutureTech &
MUE (pp. 349-355). Springer Singapore.

[63] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., & Zagorodnov, D. (2009, July). Eucalyptus: an open-
source cloud computing infrastructure. In Journal of Physics:
Conference Series (Vol. 180, No. 1, p. 012051). IOP Publishing.

[64] Basthikodi, M., Faizabadi, A. R., & Ahmed, W. (2019). HPC Based
Algorithmic Species Extraction Tool for Automatic Parallelization
of Program Code. International Journal of Recent Technology and
Engineering, 8, 1004-1009.

[65] Basthikodi, M., & Ahmed, W. (2016, December). Classifying a
program code for parallel computing against hpcc. In 2016 Fourth
International Conference on Parallel, Distributed and Grid
Computing (PDGC) (pp. 512-516). IEEE.

[66] Varma, N. M. K., Min, D., & Choi, E. (2011, November).
Diagnosing CPU utilization in the Xen virtual machine
environment. In 2011 6th International Conference on Computer
Sciences and Convergence Information Technology (ICCIT) (pp.
58-63). IEEE.

[67] Roschke, S., Cheng, F., & Meinel, C. (2009, December). Intrusion
detection in the cloud. In 2009 eighth IEEE international
conference on dependable, autonomic and secure computing (pp.
729-734). IEEE.

[68] Mazzariello, C., Bifulco, R., & Canonico, R. (2010, August).
Integrating a network ids into an open source cloud computing
environment. In 2010 sixth international conference on information
assurance and security (pp. 265-270). IEEE.

[69] Garfinkel, T., & Rosenblum, M. (2003, February). A virtual
machine introspection based architecture for intrusion detection. In
Ndss (Vol. 3, No. 2003, pp. 191-206).Retrieved from :
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8367
&rep=rep1&type=pdf%5Cnhttp://www.isoc.org/isoc/co
nferences/ndss/03/proceedings/papers/13.pdf

[70] Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J., & Almorsy, M.
(2011, September). Cloudsec: a security monitoring appliance for
virtual machines in the iaas cloud model. In 2011 5th International
Conference on Network and System Security (pp. 113-120). IEEE.

[71] E. Summary. (2014). WHITE PAPER 2 Cybersecurity Problems
Today 2 What Is an NGFW? 3 Best Practices for Selecting an
NGFW. Next-Generation Firewalls: The New Norm in Defense.
Retrieved from:
https://webobjects.cdw.com/webobjects/media/pdf/Solutions/Secur
ity/148649-Next-Generation-Firewalls-The-New-Norm-In-
Defense.pdf

[72] Naidu, V. R., Bhat, A. Z., & Singh, B. (2019). Cloud Concept for
Implementing Multimedia Based Learning in Higher Education. In
Smart Technologies and Innovation for a Sustainable Future:
Proceedings of the 1st American University in the Emirates
International Research Conference—Dubai, UAE 2017 (pp. 81-84).
Springer International Publishing.

