
SSURJET 

Sir Syed University Research Journal of Engineering & Technology 

2023, Vol. 13, No. 1, 

https://doi.org/10.33317/ssurj.561 

 

 

 

Creative Common CC BY: This article is distributed under the terms of the Creative Commons Attributes 4.0 License. 

It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

89 

 

Exploring Virtual Machine Scheduling Algorithms: 

A Meta-Analysis 
Salman Mahmood1*, and Nor Adnan Yahaya1 

1Department of Information Technology, Malaysia University of Science and Technology, Selangor, Malaysia 

 

*Correspondence Author: Salman Mahmood (salman.mahmood@phd.must.edu.my) 
 

Received February 04, 2023; Revised March 11, 2023; Accepted March 15, 2023 

 

Abstract 

This review paper provides a comprehensive assessment of scheduling methods for cloud computing, with an emphasis on optimizing 

resource allocation in cloud computing systems. The PRISMA methodology was utilized to identify 2,487 articles for this comprehensive 

review of scheduling methods in cloud computing systems. Following a rigorous screening process, 30 papers published between 2018 and 

2023 were selected for inclusion in the review. These papers were analyzed in-depth to provide an extensive overview of the current state of 

scheduling methods in cloud computing, along with the challenges and opportunities for improving resource allocation. The review evaluates 

various scheduling approaches, including heuristics, optimization, and machine learning-based methods, discussing their strengths and 

limitations and comparing results from multiple studies. The paper also highlights the latest trends and future directions in cloud computing 

scheduling research, offering insights for practitioners and researchers in this field. 

 

Index Terms: Heuristics-Based Scheduling, Optimization-Based Scheduling, Performance Optimization, Quality of Service (QoS), 

Scheduling Algorithms. 

 

I. INTRODUCTION 

Cloud computing is defined in various ways in terms of 

services with many definitions not encompassing all its 

features. Key features include access to resources, OS, 

remote desktop virtual machines, web services, and 

databases [1]. 

Infrastructure as a service (IaaS) is a key service model of 

cloud computing where task scheduling algorithms have a 

direct impact on job performance and resource utilization. 

Achieving load balancing through task scheduling in 

virtual machines remains a challenge, but it is essential to 

optimize resource utilization and ensure efficient job 

execution. 

Various task scheduling algorithms have been proposed in 

cloud systems to balance the workload among resources 

and virtual machines for optimal resource utilization and 

execution time. As the number of cloud users increases, it 

becomes challenging for Cloud Service Providers (CSPs) 

to respond to all requests, making it necessary to use task 

scheduling algorithms to minimize complexity [2]. 

Previous studies have explored different algorithms, 

including memory storage management and multi-

objective task scheduling approaches that meet Service 

Level Agreements (SLAs) in virtual systems. Cloud-Sim 

has been used as a simulation tool to link code with 

cloudlets, virtual machines, and data centers [3]. 

This study aims to provide a systematic literature review 

of the role of task scheduling algorithms in optimizing 

resource utilization in cloud systems. Specifically, this 

review will analyze and evaluate existing research to 

understand the concept of cloud computing, including 

IaaS, and the various task-scheduling algorithms proposed 

in cloud systems. The review will also identify the gaps in 

the existing literature and suggest potential areas for 

further research. 

II. LITERATURE REVIEW 

A. The Architecture of Cloud Computing Review                 

Cloud computing architecture has 7 key components: 

application, client, network, platform, software, storage, 

and energy consumption. It is made up of numerous 

components that communicate through the application's 

programming interface, typically a web service and a three-

tier architecture [4]. The architecture has two facets: a client 

instance for the user and the cloud serving as the backend 

for cloud software. The locations of servers, data storage 

systems, and data centers make up the cloud's design. The 

system is well-managed and more stable than its 

predecessors. Figure I depicts the cloud's entire design as 

shown below: 

 

 
Figure I: Cloud Architecture as a Block Diagram 

 

Cloud design has a layered architecture with four user 

levels as shown in figure II. Each layer is independent and 
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only depends on the layer above for inputs. The middleware 

contains frameworks of system software that allow users to 

build and deploy code to the cloud provider. The client has 

control over the provider's resources in this layer. 

 

 
Figure II: Layered Architecture for Cloud Computing 

B. Deployment Model 

The National Institute of Standards and Technology (NIST) 

defines four traditional cloud computing models or styles: 

public, private, community, and hybrid [5]. These models 

are responsible for maintaining systems and using system 

funds based on the location of the hardware. The 

deployment model for cloud computing is depicted in 

figure III. 

 

 
Figure III: Model for Cloud Computing Deployment 

C. Scheduling in Virtual Machines 

A vector-based scheduling strategy for a Virtual Machine 

(VM) cloud environment was proposed [6]. It involves 

generating permutations of tasks assigned to resources, 

using a three-layer approach of platforms, infrastructure, 

and application layers. A two-level virtual scheduling 

model in a cloud environment where the user interacts with 

the network via the application layer and can also use it to 

develop new applications. In the first level of scheduling, 

the user and the virtual machine are the parties involved, 

while in the second level, the virtual machine and the host 

assigned to it based on the first-level criteria are the parties 

involved. The virtual machine is selected using First Come 

First Serve (FCFS) scheduling and assigned to an under-

loaded physical machine, which is then increased with 

active servers. The model is illustrated in figure IV below: 

 

 
Figure IV: Model for Two-level Virtual Scheduling 

 

A VM migration algorithm was proposed to provide quick 

and fair migration [7]. It uses mathematical analysis to 

demonstrate precision and aims to make efficient use of the 

network with minimal migration. The algorithm has several 

stages: initialization, allocation, checkpoints, and iterative 

log. 

In an article, a genetic algorithm-based VM placement 

strategy was suggested to eliminate starvation [8]. The 

strategy prioritizes VMs using the Least Square method to 

determine fitness values and allocate higher priority to VMs 

with higher values. A VM scheduling technique was 

proposed for a Cloud environment to evenly distribute load 

among all hosts, with low cost and high performance being 

the primary goals [6]. The technique can be implemented in 

static or dynamic mode for independent or dependent tasks, 

respectively. The algorithm is compared to throttle and 

round-robin algorithms. Figure V shows the classification 

of VM scheduling: 

 

 
Figure V: VM Scheduling Classification 

D. Dependent and Independent Tasks 

Tasks can be divided into independent tasks and dependent 

tasks or workflow tasks based on their complexity. 
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Independent tasks don't require inter-task communication 

and are prioritized in the planning phase. The planning 

process of autonomous activities includes static and 

dynamic algorithms, as shown in figure VI. Tasks can also 

be categorized based on granularity as large seed and small 

seed assignments. 

 

 
Figure VI: Scheduling Algorithms Classification for Independent Tasks 

E. Heuristics and Metaheuristics Scheduling Algorithm 

A heuristic is a problem-solving technique that can be 

successful in some cases and not in others. It's useful when 

optimization is difficult or impossible. Heuristics are often 

based on common sense or rules of thumb. A meta-

heuristic is a higher-level heuristic that is used when 

information is limited or software capacity is insufficient. 

It allows for assumptions from various fields and is more 

relevant when an ideal solution is desired but machine 

feasibility is questionable [9]. 

Metaheuristics can consider almost perfect alternatives in 

comparison with other algorithms. Few algorithmic 

methods can be confined only to the best possible local or 

global optimum, but metaheuristic methods go beyond the 

local maxima to the global maxima. A range of storm 

optimization is introduced by various metaheuristic 

techniques so that findings are based on randomly 

produced variables [10]. 

F. Task Scheduling 

Scheduling is essential for managing a large number of 

requests in the cloud. It's challenging to schedule tasks and 

allocate resources in the cloud, so an efficient scheduling 

algorithm is necessary. 

 

a) Static Mode: 

Scheduling uses heuristics-based algorithms to schedule 

independent tasks. The Balanced Minimum Completion 

Time (BMCT) heuristic set has been suggested to improve 

scheduling efficiency. It uses FCFS for initial allocation 

and then balances the load between computers by 

swapping tasks. BMCT is seen to have promising 

outcomes compared to Dynamic Level Scheduling. Other 

algorithms like Critical Path On a Processor (CPOP) and 

Heterogeneous Earliest Finish Time (HEFT) are used in 

heterogeneous settings. 

 

b) Opportunistic Load Balancing (OLB): 

It is a scheduling algorithm that aims to make all resources 

or computers as busy as possible. Tasks are assigned 

randomly to available machines without considering their 

execution time. Opportunistic Load Balancing (OLB) is 

easy to implement but may result in poor make-span as it 

does not consider the execution time of tasks. The 

efficiency of the OLB algorithm has been studied, with the 

aim of assigning the chosen job to VMs that are available 

and have the least load compared to other VMs. The 

algorithm scales each VM's current load and selects the 

VM with the minimum load to run the job [11]. 

 

c) Minimum Execution Time (MET) Algorithm: 

It allocates tasks to virtual machines based on their 

estimated best execution time, rather than their availability. 

It seeks to assign the best machine for each task, leading to 

potentially large load imbalances. 

 
d) Minimum Completion Time (MCT) Algorithm: 

It assigns tasks to VMs based on the shortest finishing 

time. It can assign tasks in random order or based on 

predictable processing time resources. A combination of 

Minimum Completion Time (MCT) and the Minimum 

Execution Time (MET) algorithm, called MECT, has been 

recommended as a better scheduling technique in 

heterogeneous computing systems with higher efficiency 

in minimizing make-span compared to basic MCT and 

MET algorithms. 

 

e) Min-Min Heuristic: 

It is an algorithm that assumes that assigning higher jobs 

to the earliest and fastest executing devices, results in a 

lower make-span. In the case where there are both short 

and long tasks, the max-min algorithm may be used to 

decrease the wait for longer tasks and result in a better 

make-span and lower machine imbalance. An improved 

Min-Min algorithm for cloud computing task scheduling 

has been proposed to improve performance and 

satisfaction of Quality of Service (QoS). The algorithm 

prioritizes the earliest finishing tasks with the lowest 

execution time and finds the best schedule. Another 

variation, Mul-QoS-Min-Min, has been proposed that 

considers resource and task resemblance, leading to 

improved execution time and QoS satisfaction compared 

to the traditional Min-Min algorithm [12]. A method of 

hybrid scheduling consisting of Longest Job First and Min-

Min has been suggested to lower the make-span for work 

scheduling in a diverse grid. The simulation results show 

improved output as the make-span is reduced compared to 

other methods. The Load Balancing Min-Min (LBMM) 

approach has been revised for scheduling static tasks and 

maximizing cloud computing resource usage [13]. 

 

f) Max-Min Heuristic: 

It determines the quickest completion times for each task 

using the Min-Min method and assigns tasks to an 

overloaded machine with the maximum average 

completion time. It performs better than the Min-Min 

algorithm in scenarios where short and long tasks exist and 

outperforms the Min-Min method when tasks are short. 

Tasks with longer durations are assigned to machines in a 
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manner similar to the Min-Min method, and the cycle 

repeats as tasks are scheduled [14]. 

 

g) Backfilling Algorithms: 

A study of self-adaptive backfilling algorithms, for multi-

channel parallel devices, shows that the system's 

predictions are better than the estimated runtime for 

traditional backfilling [15]. The International Business 

Machines Corporation (IBM) study demonstrates the 

effectiveness of backfilling algorithms in parallel systems 

and compares it to the commonly used FCFS technique for 

job scheduling. It also considers the CONSERVATIVE 

and EASY backfilling algorithms and their ability to shift 

small jobs to fill gaps produced by FCFS. The study also 

mentions that FCFS, along with backfilling algorithms, is 

available for scheduling jobs in the backfilled queue [16]. 

G. Static-Metaheuristics-based Independent Task 

Scheduling 

 

a) Genetic Algorithm: 

A study suggested an approach based on the first fit used 

by cloud computing systems like Eucalyptus to solve the 

starvation issue but lower task make-span [17]. The 

technique fails to optimize resource utilization as tasks are 

executed on every resource. A genetic algorithm approach 

lays out provisions for a static instructions genetic set, 

which considers the overall time of completion, average 

task completion time, and cost considerations [18]. 
 

b) Simulated Annealing (SA): 

It is a common heuristic method that uses a simulation 

based on the physical annealing of strong metals. It is a 

standard and probabilistic meta-algorithm for global 

optimization problems. In [19], the Simulated Annealing, 

Cuckoo Search Algorithm, and Firefly Algorithm were 

used to find the best alternative for effective resource 

utilization and the Firefly Algorithm outperformed the 

other two methods in task scheduling [20]. 
 

c) Tabu Search (TS): 

The hybrid flow-shop scheduling problem has been 

researched as a Mixed-Integer Programming (MIP) model, 

followed by a TS-based algorithm. The efficiency of 

heuristics for flow-shop planning was evaluated, showing 

that the best technique varies based on problem size, 

required solution quality, and available time [19]. 

 

d) Gravitational Search Algorithm (GSA): 

The modified GSA algorithm that combines GSA and 

Particle Swarm Optimization (PSO) performs better in 

terms of classification accuracy and choice capacity 

compared to Support Vector Machine (SVM) or GSA-

SVM. It uses the concept of mass and gravity in task 

scheduling, where particles act as agents with mass that 

interact and move towards higher weight masses through a 

gravity force. This results in improved performance [21]. 

The author presented a meta-heuristic optimization method 

called GSA [22]. It was implemented for power system 

economic operation, where it calculates the total generated 

power in the internal area and the power borrowed from 

different areas for the most economical load specification. 

H. Dynamic Mode - Independent Tasks Scheduling 

It is further possible that the algorithm of OLB, MCT, and 

MET, are used for addressing the changes done in the 

previous section for dynamic planning of the autonomous 

assignments within the internet mode [55]. Other 

algorithms included are the switching algorithm as k-

Percent Best (KPB). 

 

a) Switching Algorithm (SA): 

The SA algorithm uses MET and MCT heuristics 

cyclically for load distribution among devices. MET 

selects the best device for a task but can assign significant 

tasks to similar devices, while MCT balances the load but 

may not handle multiple jobs with different execution 

times. If a job arrives randomly, MET balances the load at 

a low cost and then MCT changes the load among devices. 

 

b) K-Percent Best (KPB): 

The Heuristic KPB assumes a subset of the work planning 

devices, consisting of the best k devices based on task 

completion time. A good k value would schedule the job 

to a computationally superior machine. The aim is to 

eliminate the practice of removing a device from the 

current task account, leading to a shorter production time 

than MCT. 

I. Workflows or Dependent Task Scheduling 

Figure VII shows categories of tasks dependent on 

different scheduling algorithms. Dynamic and static 

scheduling algorithms are used to schedule dependent 

tasks [23]. 

 

 
Figure VII: Scheduling Algorithms Classification for Dependent Tasks 
 

a) Static Mode: 

Heuristic-based algorithms and directed random-search-

based algorithms are the two categories of static algorithms 

for independent and selected jobs, which may result in 

division, into three types: clustering heuristics, list 

planning heuristics, and task duplication heuristics. A 

study discussed a challenge with parallel constraints in 

cloud IaaS scheduling, focused on energy efficiency [24]. 

The author proposed a parallel bi-objective hybrid genetic 

algorithm that balances energy requirements and make-

span based on DVS to save energy. The NP-hard issue with 

the heuristic-based approach leads to three classifications: 
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algorithms for lists, algorithms for clustering, and 

algorithms based on task duplication. 

 

b) List Scheduling Heuristics: 

Tasks based on the specified graph are described by 

objectives in the scheduling heuristics list and a structured 

list of tasks is formed. Tasks are then selected based on 

priorities and planned for the processor that minimizes the 

cost function. Besides categorization, Modified Critical 

Path (MCP), Mapping Heuristic (MH), Dynamic Level 

Scheduling (DLS), Levelized-Min Time (LMT), Critical-

Path-On a Processor (CPOP), and Heteroge proposed a 

method for dividing a large task into smaller tasks that can 

be executed on multiple cloud VMs. They developed a 

cost-efficient task scheduling approach by combining two 

heuristic scheduling algorithms to list such tasks as DAG 

(Direct Acyclic Graphs) [25]. 

 

c) Clustering Heuristics: 

The use of clustering techniques for processors with an 

unlimited number of processors. The method maps tasks in 

a specified graph to clusters, which are refined in each 

iteration by merging several clusters. The tasks in the same 

cluster are assigned to the same processor. Examples of 

clustering algorithms are Linear Clustering, Dominant 

Sequence Clustering (DSC), Directed Mobility, and 

Clustering and Scheduling (CASS) scheme. 

 

d) Task Duplication Heuristic: 

Task duplication algorithms aim to reduce coordination 

overhead by grouping redundant tasks together. The 

algorithms differ in task duplication selection strategy. 

They are not as practical as other algorithms due to higher 

time complexity. The different types of algorithms under 

this heuristic include Critical Path to Quick Duplication, 

Heuristic Duplication Bottom-up Top-Down, Heuristic 

Duplication Scheduling, Next Reduction, and First 

Duplication. 

 

e) Dynamic Mode: 

Researchers proposed a model for variation in VM 

computing rate using normal distribution re-education 

percentage [26]. It uses statistical models and tables to 

calculate the normal or exponential distribution of 

independent execution time and commute time. The 

algorithm works on a wide range of computing algorithms 

and reduces task delays by rescheduling tasks to faster 

resources, but only after delays have occurred. Research 

implements dynamic scheduling for a group of tasks with 

different arrival rates [27]. The research in [28] defines 

efficiency as the likelihood of completing a workflow 

within a set time limit and avoiding exceeding period 

restrictions. To fulfill SLA requirements, a proposal was 

made to map customer and service provider requirements 

in a QoS-aware workflow management and use a bi-

objective function for execution cost. The implementation 

of a timeline-based workflow partitioning approach is 

discussed by researchers [29]. Several publications suggest 

using metaheuristic planning techniques, such as hybrid 

GA, to reduce execution time and cost for improved 

efficiency. 

III. METHODOLOGY 

A. Search Strategy 

This article is a systematic literature review of cloud 

computing scheduling methods. The authors searched 

several databases for studies published between 2018-2023 

that included keywords related to cloud computing 

scheduling, such as Energy Efficiency, Heuristics-Based 

Scheduling, Load Balancing, and Machine Learning-

Based Scheduling. The authors reviewed and included 

only English-language articles that met their inclusion 

criteria and used standardized methods and tools to extract 

information from the articles. The inclusion and exclusion 

factors are described in more detail in table I. Here table II 

describes the search strategy of the research. The quality 

of articles was assessed using the PRISMA checklist as 

shown in figure VIII. The authors screened titles and 

abstracts, retrieved potential articles, and screened full-text 

articles for inclusion based on set criteria. The rest were 

excluded. 
 

Table I: Criteria (Including and Excluding) 

Inclusion Justification 

Published papers in 2018-
2023 in journals and 

conference proceedings. 

Use the most recent findings only 

The paper presents the 

Quality of Service (QoS) 
associated with the cloud. 

The review of measures for Quality of 

Service (QoS) would evaluate the 
various metrics used to assess the 

performance of scheduling and load 

balancing algorithms, such as response 
time, throughput, and utilization. 

  

Exclusion Justification 

Papers, which are not in 

the English language 

The standardization of English as a 

global language has been established. 

Review papers, meta-

analyses, surveys, case 

reports, comments, letters, 
presentations/posters 

presented at international 

conferences. 

Focus on original research. 

Articles that have 

redundant data. 

Duplicate data has been ignored for 

repetition. 
 

Table II: Search Strategy of the Research 

Searching Search Terms 

Science Direct, Springer, 

IEEE, Wiley, MDPI, 
Hindawi, Inderscience and 

IGI 

1.  Energy Efficiency 

2.  Heuristics-Based Scheduling 
3.  Load Balancing 

4.  Machine Learning-Based Scheduling 

5.  Optimization-Based Scheduling 
6.  Performance Optimization 

7.  Quality of Service (QoS) 

8.  Resource Management 
9.  Resource Utilization 

10.  Scalability 

11.  Scheduling Algorithms 
12.  Virtual Machines (VMs) 

 

Strategy: #1 AND #2 AND #3 AND #4 
AND #5 AND #6 AND #7 AND #8 

AND #9 AND #10 AND #11 AND #12 
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Figure VIII: Flowchart for Article Screening and Selection 

IV. DISCUSSION AND FINDINGS 

VM scheduling in Cloud Computing (CC) has received 

significant attention with several studies evaluating 

different scheduling strategies based on factors such as 

QoS, scalability, dependability, and cloud environment. 

The studies break down scheduling strategies by 

examining performance indicators such as SLA violation 

and power utilization. Load balancers use scheduling 

techniques to choose backend servers for virtual machine 

requests and redistribute VMs for improved workload 

distribution [30]. A study proposes a VM scheduling 

technique that considers historical VM usage for improved 

performance [31]. 

Cloud apps can quickly run out of memory without 

efficient load balancing. A solution using file category 

formatting for improved load balancing in CC with large 

content is proposed. The most popular scheduling methods 

in CC are listed in table III and use heuristics or 

metaheuristics to create optimal routes for jobs to 

accessible VMs, which cannot be achieved in a set time 

using traditional deterministic methods [32]. 

The purpose of this systematic literature review is to 

identify the cloud computing scheduling methods based on 

the QoS measures. 

  
Table III: Cloud Computing Scheduling Methods 

Mechanisms Used Measures for QoS 
Technology for 

Performance Evaluation 
Merits Demerits 

Scheduling- Load 

Balancing [33] 
Review CloudSim Emerging domains detected Fundamental review 

Metaheuristic [34] Response Time, Cost CloudSim 
Reliable, Cost and 

Response time reduced 

Higher computation costs, 

fewer services available 

Scheduling-Energy 

Aware [35] 
Execution Time, Energy CloudSim 

Resource utilization and 

energy efficiency are 

improved, and execution 

time is reduced 

There are limitations on the 

volume of work and the 

process deadlines 

Scheduling- Load 
Balancing [36] 

Response Time, Cost CloudSim 
Lower cost, Decreased 

Response Time 

The number of tasks and 

their complexity are not 

discussed 

Framework for Resource 
Provisioning [37] 

Response Time and Cost CloudSim 
Accuracy and reduced cost 

and response time 

Throughput and energy 

efficiency characteristics 

are not covered 

System for Controlling 
Elasticity [38] 

Response time, elasticity, 
and resource utilization 

CloudSim 

Elasticity, lower response 

time, and higher resource 

utilization 

Issues with Scalability 

MFO-based Scheduling 
[39] 

Execution Time, Makespan iFogSim 
Reduced execution time 

and duration 

Scalability is not well 

proven because fewer nodes 

are used 

BWM-VIKOR-based 
Scheduling [40] 

Utilization of VM, 
Throughput Time, 

Makespan 

CloudSim 
Increased VM usage, 

decreased makespan, and 

increased throughput 

Fewer virtual machines and 
duties 

BWM-TOPSIS-based 

Scheduling [41] 

Utilization of Resource, 
Makespan, Energy 

Consumption 

CloudSim 
Higher VM utilization, 
Decreased Makespan, 

Better energy consumption 

Reliability challenges, 
small scale data centers c 

Considered 

DVFS-PL-based 
Scheduling [42] 

SLA Violation, Execution 
Time 

CloudSim 
Minimum SLA violation, 

Minimized Execution Time 
More number of VMs need 

to be considered 

Provisioning of 

Resources [43] 

Utilization of Resources, 

Cost, Response Time 
CloudSim 

Minimized cost and 

Response Time 

Wide-ranging user needs 

were not taken into account 

MOB and BAT-LBRC 
Scheduling [44], and 

[45] 

Accuracy, Efficiency, 
merging clusters, Decision 

Making 

 

CloudSim 

More accurate and efficient, 

similar clusters 

Mergers, improved decision 
making. 

Response time and 

throughput aren't addressed, 

and scalability issues are 
present. 

System for PLB-HDD 

Optimization [46] 

Cost of Execution, 

Makespan 
CWS 

Decreased execution costs, 

improved timeliness 

Scalability issues and the 

utilization of fewer virtual 
machines 

AEFS-WOA and CSO-

IRRO Scheduling [47], 

and [48] 

Convergence, Execution 

Time, Throughput Time, 

Response Time 

CloudSim 

Reduced response, 

execution, and throughput 
times and faster 

convergence 

Decision-making capability 

was constrained by a lack 
of scalability and the usage 

of fewer datasets 
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Mechanisms Used Measures for QoS 
Technology for 

Performance Evaluation 
Merits Demerits 

TGA-EHO Scheduling 

[49] 

Consistency, Location 

Search, Accuracy 
CloudSim 

Better accuracy and 
consistency, faster location 

search 

Lesser number of nodes is 

considered 

SA-HHO Scheduling 

[50] 

Scheduling of jobs, 

makespan 
CloudSim 

Better job scheduling, 

shorter lead times 

Lesser jobs and QoS 

metrics are considered 

EELBP Scheduling [51] 
Energy Use, Reaction, and 

Calculation Time 
Eucalyptus 

Computation time is 

decreased while response 

time and energy use are 
enhanced 

Scalability problems; ML 

technique not employed 

ICSO Scheduling [52] 
F-Measures, CEC Function, 

Clustering Issues 
MATLAB 

Clustering and CEC 

functions have been 

improved 

There is no mention of 

energy consumption, 
response time, or 

throughput 

Metaheuristic Hybrid 

Algorithm [53] 

Makespan, Throughput, 

execution time 
CloudSim 

Lower makespan, Increased 
throughput, better execution 

time 

Concerns about energy use 

were overlooked 

PSO Scheduling [54] Execution Time, Accuracy Google Cloud Higher efficiency Lower accuracy prediction 

SLA-Aware Load 
Balancing: Scheduling 

[55] 

Energy Consumption, 

Migration Time 
MATLAB 

Lesser migration time, 
improved energy 

consumption 

Execution time and 
throughput are not 

discussed 

SLA-Agile Dependent 
VM Scheduling [56] 

SLA violations CloudSim Reduce SLA Violations 
There are no QoS metrics 

available 

Vanet Optimization-

Metaheuristic [57] 
Network overhead, Energy NS2 

Decreased overhead, 

improved consumption of 
energy 

Degradation of 

performance, increased cost 
of computations 

MPSO- Scheduling [58] 
Utilization of Resources, 

Task overhead 
CloudSim 

Higher Resource utilization 
reduced task overhead 

Scalability is not addressed, 

and a lower number of VMs 

and jobs are evaluated 

MLP-ABC Scheduling 

[59] 
Accuracy CloudSim NSL-KDD 

Improved Kappa Value, 

MAE and RMSE 

Apart from accuracy, QoS 
measures have not been 

confirmed 

Straggler Prediction and 

Mitigation Technique 

(START) [60] 

Violation rate and 
execution time 

CloudSim 

Reduction in response time, 

Fewer SLA violations, and 
Efficient resource 

utilization 

There are no QoS metrics 
available 

 

Current load balancing techniques in cloud computing 

include Round Robin, Weighted Round Robin, Least 

Connections, Weighted Least Connections, IP Hash, and 

Domain Name System (DNS) load balancing. However, 

these load-balancing techniques have limitations that can 

impact cloud performance. For example, Round Robin and 

Weighted Round Robin may not distribute the load evenly 

and may not consider server capacity. Least Connections 

and Weighted Least Connections may not consider the 

location of the requesting client or the location of the 

servers. IP Hash may not work well for large-scale 

systems, and DNS load balancing may be slow to respond 

to changes in server availability. Load balancing can 

impact cloud performance by affecting response time, 

throughput, and resource utilization. Poor load balancing 

can lead to the overloading of some servers while others 

remain underutilized, resulting in reduced performance 

and potential service disruption.  

 

To address load balancing challenges in cloud computing, 

several potential solutions have been proposed based on 

QoS, including: 
 

• Dynamic Load Balancing: dynamically adjust 

server allocation based on real-time workload and 

resource utilization to optimize QoS. 

• Machine Learning-Based Load Balancing: use 

machine learning algorithms to predict future 

workload and resource usage and make load 

balancing decisions accordingly. 

• Cloud Orchestration: use an automated 

orchestration system to manage resources and 

allocate workloads based on QoS criteria. 

• Hybrid Load Balancing: combine multiple loads 

balancing techniques to achieve optimal load 

balancing based on QoS requirements. 

 

Overall, load balancing plays a crucial role in ensuring 

optimal performance and reliability in cloud computing, 

and ongoing research is focused on developing more 

efficient and effective load-balancing techniques to 

address the evolving needs of cloud computing. 

The implications of this study are significant for both 

researchers and practitioners in the field of cloud 

computing. By analyzing the current state-of-the-art task 

scheduling algorithms in cloud computing systems, this 

study provides insights into the strengths and weaknesses 

of existing methods and identifies potential areas for 

improvement. 

Researchers can use the findings of this study to develop 

more effective task-scheduling algorithms that can further 

optimize resource utilization in cloud computing systems. 

Additionally, the study highlights the need for further 

research on the application of metaheuristic algorithms to 

cloud computing systems, which could potentially lead to 

more efficient task-scheduling methods. 
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Practitioners in the field of cloud computing can benefit 

from the insights provided by this study by gaining a 

deeper understanding of the role of task-scheduling 

algorithms in optimizing resource utilization. They can use 

this knowledge to make informed decisions about the 

selection and implementation of task scheduling 

algorithms in their own cloud computing systems, 

ultimately leading to improved performance and cost 

savings. 

V. RECOMMENDATION 

The private cloud is a system that allows you to store data 

privately. The CC environment is made up of Eucalyptus. 

Eucalyptus supports a variety of hypervisors and Linux 

operating systems [61], and [62], and it is made up of five 

essential components: Examples of cloud regulators 

include the Cloud Regulator, Cluster Regulator, Node 

Regulator, Walrus, and Storage Regulator. Major 

scheduling choices are made by cloud regulators, who also 

communicate demands to cluster regulators. It is in charge 

of virtualized resource management. The cluster regulator 

manages VM instances and plans VM execution on 

explicit nodes. The cluster regulator and storage regulator 

work together. Virtual machines are started and stopped by 

the node regulator. When it comes to cloud VM 

scheduling, Round Robin (RR), Greedy, or Power Save 

strategies are employed by Eucalyptus. With one VM 

routinely assigned to each host, the RR VM scheduling 

strategy prioritizes equally distributing loads across all 

hosts. 

Before connecting with the next VM to establish a 

connection with the next host, the scheduler assigns virtual 

machines to each host. Each host goes through this process 

until at least one virtual machine is present on each. The 

RR approach for VM scheduling has the main advantage 

of making fair use of all available resources. All hosts are 

given an equal number of VMs to guarantee that 

everything is in order. The use of the RR technique for VM 

scheduling has the significant disadvantage of increasing 

power consumption because several hosts will be turned 

on for an extended period of time. A Greedy VM selects 

the first node that can meet the underlying requirements. 

As a result, although Greedy's power consumption is 

lower, load balancing is not achieved. In comparison to 

these two, the PowerSave approach for VM scheduling 

saves more electricity. 

Open Nebula, another standalone cloud, supports a variety 

of hypervisors and operating systems and includes 

components including a front-end, hosts with hypervisor 

support, data stores, service networks, and virtual machine 

networks [63]. For cloud VM scheduling, Open Nebula 

employs a Match Making approach. The matchmaking 

technique prioritizes VM allocation to hosts with high-

ranking expressions, which is important when using 

strategies like striping, packing, and load-aware rules. 

Several authors sought to reduce switching times in CC by 

using parallel [64], and [65] approaches. 

The OpenStack cloud includes computing, a dashboard, 

block, and object storage, identity services, a database, and 

image services [66].  For internal communication, the 

OpenStack cloud components employ the RMQ Protocol. 

The VMs in the Nova Computing Node hosts are 

scheduled using the Filter scheduling method that makes 

use of a weighing process and filtering. To filter compute 

node hosts, filter settings would be utilized. Based on the 

filtered hosts, a weighing operation will begin. Table IV 

compares the Eucalyptus, OpenStack, and Open Nebula 

clouds' VM scheduling techniques. 
 

Table IV: Search Strategy of the Research 

Cloud 

Environments 

Techniques for VM 

Scheduling 
Important Properties 

OpenStack 
Filter Scheduling 

Algorithm 
Based on Memory 

Awareness 

Open Nebula 
Algorithm for finding 

matches 

Efficiency in Terms of 

Costs 

Eucalyptus 

Round Robin 

Algorithm 

Efficiency in Terms of 

Time 

PowerSave Algorithm Saves Electricity 

Greedy Algorithm 
Power Usage is 

Reduced 

 

The study in reference [67] describes an IDS framework 

with various IDS sensors placed throughout the virtual 

infrastructure. Each sensor monitors a virtual component 

and the central management unit oversees all sensors, 

combining and correlating alarms. The central 

management unit has four parts: Event Gatherer, Event 

Database, Analysis Controller, and IDS Remote Controller 

as shown in figure IX. The Event Gatherer collects and 

archives alerts, the Analysis Controller uses correlation to 

detect multi-event attacks, and the IDS Remote Controller 

manages the configuration and lifespan of each IDS sensor. 

 

 
Figure IX: Cloud IDS architecture [67] 

 

Multiple IDS sensor types but lacks consideration for the 

dynamic nature of virtual infrastructure. It does not address 

the issue of VM migration and sensor adaptation to 

changes, such as new services in the VMs. Another 

approach in reference [68] places network-based IDS 

sensors next to computing nodes in IaaS to reduce DoS 

incidents but still has limitations, such as the need for IDS 

reconfiguration and handling unexpected traffic increases. 

The approach supports only network-based IDSs, unlike 

the variety of IDSs in [67]. 

Livewire is an inactive [69], early Virtual Machine 

Introspection or VMI-based intrusion detection system that 

utilizes the hypervisor qualities of isolation, inspection, 

and interposition for strong isolation and host-based 

visibility. Figure X shows its architecture. 
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Figure X: Structure of Livewire 

 

Livewire is an intrusion detection system using Virtual 

Machine Introspection (VMI) approaches. It uses three 

hypervisor qualities of isolation, inspection, and 

interposition to create strong isolation from malicious 

attackers while keeping the visibility of a host-based IDS. 

The architecture of Livewire includes an OS interface 

library, which bridges the semantic gap by translating 

hardware events into OS-level structures, and a policy 

engine, which determines if the system has been corrupted. 

The prototype was tested on a VMware workstation, but it 

has limitations including the inability to manage dynamic 

events in a cloud environment, lack of adaptation to new 

services added to the virtual machine, and support for only 

one virtual machine per IDS. 

CloudSec aims to provide active monitoring of several 

collocated VMs without putting any sensitive code inside 

the untrusted VMs. [70] used VMI to identify kernel data 

rootkits by creating dynamic guest kernel data structures. 

Instead of direct access to the memory pages of the VMs, 

it interacts with the hypervisor and stores the pertinent 

pages in a unique memory page buffer. A specialty module 

is required for CloudSec (KDS) to load information about 

the OS kernel data structures of the VMs. The Semantic 

Gap Builder (SGB) narrows the semantic gap and 

generates a profile of the monitored VM.  

 

 
Figure XI: Architecture for CloudSec [70] 

 

The Defense Modules, which perform the actual detection, 

use the profile. The architecture of CloudSec is shown in 

figure XI. 

Although CloudSec permits concurrent active monitoring 

of several VMs, its performance costs in a multi-tenant 

context have not been studied. Furthermore, turning off an 

infected VM is the extent of the active monitoring 

capabilities. CloudSec is only compatible with the 

VMware ESXi hypervisor and does not address dynamic 

events. 

We modify NIDSs to account for the dynamic shifts in a 

cloud context, ensuring that network traffic traveling to 

and from the information system housed in the cloud is 

properly monitored. Our contribution deals with the 

adaptation-related concerns that the earlier-presented 

solutions neglect to address. 

This list of firewall options for cloud settings includes 

cloud-specific firewalls. We concentrate on industrial 

solutions because developing fresh cloud firewall solutions 

or enhancing existing ones requires a lot of work. Our 

emphasis is divided between firewalls for apps and 

firewalls for the future. Future-Generation Firewalls One 

of the most significant cyber hazards to a cloud 

environment is large-scale distributed assaults, which 

cause several security incidents at different levels of a 

cloud architecture. One way to stop these assaults is by 

integrating a next-generation firewall into the cloud 

architecture. Deep packet inspection for network traffic 

analysis, access control for online apps that are user-

focused, and access control for Internet applications that 

are application-focused are just a few of the features that 

the future generation of firewalls will be able to execute in 

one device. 

VMware and Palo Alto Networks have partnered to create 

VMSeries, a next-generation firewall with application-

driven access management and the ability to dynamically 

adjust security policies [71]. The firewall includes a new 

feature, "tags", which allow security rules based on VM 

attributes. The system integrates with the NSX security 

suite and provides access to network traffic and topology 

data, but does not allow component sharing among tenants 

and does not account for tenant-specific security 

requirements. The VMSeries is linked to Amazon EC2. 

Application-level firewalls have emerged as a solution for 

monitoring network traffic caused by specific applications. 

These firewalls filter network packets based on rules that 

consider the protocols and states of the relevant apps. 

Implementing this solution for web apps in a cloud 

environment provides defense against recognized 

application-level dangers like SQL injection or cross-site 

scripting [72]. Amazon Web Application Firewall (WAF) 

is available to tenants who can create custom security 

policies based on their hosted apps and use load balancers 

to implement the rules. Tenants have a lot of latitudes to 

customize the ruleset, but dynamic events are not 

considered by the WAF and it's unclear if component 

sharing is possible for rules from multiple tenants. 

VI. CONCLUSION 

In summary, cloud computing is a multifaceted concept 

that incorporates various services, with IaaS being a key 

feature that includes remote desktop VMs, web services, 

and databases. Task scheduling algorithms play a 

significant role in optimizing resource utilization and 

balancing the workload among resources and VMs. 

However, achieving optimal resource utilization and 

execution time is challenging, necessitating a multi-
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objective task scheduling approach that adheres to SLAs. 

Researchers have proposed algorithms for task scheduling 

in IaaS and used simulation tools like Cloud-Sim. 

Additionally, CSPs offer low-cost storage services on a 

pay-per-use basis, making cloud computing an attractive 

option for managing and providing computing 

applications. The private cloud is a system for storing data 

privately, with Eucalyptus being a CC environment with 

five components. Eucalyptus uses Round Robin, Greedy, 

or Power Save strategies for cloud VM scheduling. 

Similarly, Open Nebula and OpenStack use Match Making 

and Filter scheduling methods, respectively. Table IV 

provides a comparison of VM scheduling techniques used 

by these standalone clouds. 

Various firewall options for cloud environments, with a 

focus on industrial solutions. The three options reviewed 

include Next-Generation Firewalls, Application-level 

Firewalls, and CloudSec. Next-Generation Firewalls 

provide deep packet inspection and access control, but the 

VMSeries firewall has limitations such as a lack of 

component sharing among tenants and not accounting for 

tenant-specific security requirements. Application-level 

firewalls, such as Amazon Web Application Firewall, offer 

protection against specific application-level dangers, but 

dynamic events are not considered, and it remains unclear 

if component sharing is possible for rules from multiple 

tenants. CloudSec allows for concurrent active monitoring 

of VMs, but its performance cost in a multi-tenant context 

has not been studied, and it only turns off infected VMs as 

a response. Future research could focus on modifying 

Network Intrusion Detection Systems to account for 

dynamic changes in cloud environments and improve the 

security of cloud systems. 
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