
SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

5

Abstract—In past years, it has been considered that only data

communicated via networks need to be secured. This paradigm

now shifted towards securing data at rest. With its increasing

significance, IEEE has introduced a mode of Advanced

Encryption Standard (AES) named as XTS-AES. Few of its

implementations exist. This paper presents a high throughput

and highly efficient fully unrolled pipelined design of AES-XTS

on FPGA. The proposed implementation incorporates only one

AES core for both tweak value encryption as well as data

encryption. Further our proposed design calculates tweak value

in parallel to data encryption/decryption process. The results

have achieved a throughput of 35.8 Gbps with an efficiency of 8.4

Mbps/slice. This design offers the best result for

Throughput/Area that is 4.641 Mbps/area.

Index Terms —Cryptography, XTS-AES, FPGA.

I. INTRODUCTION

ecuring data at move is considered to be one of the critical

issues in current ages. Now, in the past few years the focus

has been shifted towards securing data at rest. Theft of

confidential data includes capturing of data as well as

complete takeover of physical equipment [1]. Encryption and

authentication are considered two main security mechanisms

[2] to prevent such threats. IEEE, keeping this in view has

introduced a mode named as XTS-AES for secure of static

data via Encryption.

Different methods of storage encryption are given in [2].

Storage encryption can be done either through software or it

may be done through dedicated hardware. Software based

encryption is relatively slow [1], consumes more power and

also not secure [3] in comparison to hardware based

encryption. In this paper we present fully unrolled pipelined

design of XTS-AES on FPGA.

XTS-AES is a tweakable block cipher that encrypts or

decrypts 128 bit of data or it’s multiple. A Cipher operation

for a given plaintext and key k is modelled as (),
where as a block cipher that involves tweakability is described

as (), where T is the value of tweak. A non-

negative integer is assigned to each data unit that is called

tweak value. Encryption of tweak as well as of data is being

done using AES algorithm.

This implementation uses the fully unrolled pipelined

design using only one AES core to encrypt the tweak as well

as data. Also we have also incorporated the multiplication of

tweak value by in a parallel approach thus minimizing the

computing cycles.

 Section II presents literature review, and then we briefly

discuss about XTS-AES algorithm in Section III, followed by

the proposed implementation, its performance results and

comparison in sections IV-VII. Finally we give our

conclusions.

II. LITERATURE REVIEW

In this section, we have summarized results that have

implemented AES on FPGA using pipelining. This related

work includes one parameter throughput/area since one of the

common parameters Throughput/Slice (TPS) [4] is used to

compare FPGA designs but this parameter sometimes does not

reflect true performance of the design as many of the designs

use heavy memory resources e.g., BRAMs, DSP Slices etc but

it is not used in calculation of Throughput/Slice. So one other

parameter Throughput/Area (TPA) is used so that efficiency

of the design can be judged truly as being highlighted in [5].

Therefore, while comparing with our proposed design we have

used both parameters.

Elbirt [4] proposed design which achieved throughput of

1.94 Gb/sec with an expense of 10992 CLB slices. Standert

[6] achieved very good throughput and efficiency but with

high use of number of BRAMs that effects throughput/area

parameter. Jarvenin [7] got throughput of 17.8 Gbps with

10750 slices with an efficiency of 1.656 Mbps/slice. Hodjat

[8] proposed two designs, one of with Block RAMs and one

without it and got a throughput of 21 Gbps. Saggese [5] got

high throughput design but with higher number of BRAMs.

The design by S.M. Yoo [9] explored the good operating

frequency but high use of BRAMs and slices that deteriorates

the efficiency as well as TPA. The other designs with its

performance parameters are listed in Table I. One of the recent

implementations given in [10] achieved the highest efficiency

but at the cost of higher number of BRAMs and DSP slices.

This design has been implemented on Virtex 5 FPGA and in

this implementation we are utilizing the same device. Our

design although has got less efficiency but we have effectively

used the hardware resources and used only 27 BRAMs thus in

terms of TPA our design is best in all. Our design also has

included key expansion while the design given in [10] does

not incorporate this. Table I provides summary of all key

parameters of these AES pipelined FPGA implementations.

Efficient AES-XTS Pipelined

Implementation on FPGA

* Shakil Ahmed and * Muhammad Naseem

S

* Computer Engineering Department, Sir Syed University of Engineering and Technology, Karachi, Pakistan (atshakil@yahoo.com)

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

6

TABLE I

SUMMARY OF AES PIPELINED FPGA IMPLEMENTATIONS

Ref
CLB
Slices

Device

Throughput
(Gpbs)

Freq
(MHz)

Block
RAMs

Efficiency

(Througput/Slice)

(Mbps/slice)

Efficiency

(Throughput/
Area)

(Mbps/Area)

[4]

10992 XCV1000-4 1.94 31.8 0 0.176 0.176

[6]

2784 XCV3200E-8 11.77 100 4.228 0.755

[7]

10750 XC2V2000-5 17.8 0 1.656 1.656

[8]

9446 XC2VP20-7 21.64 169.1 0 2.291 2.291

[5]

5810 XVE2000-8 20.3 100 3.494 1.091

[9]

7761 Xc2vp70-7 29.8 232.6 200 3.840 0.893

[11]

2457 XCV812E-8 12 93.9 226 4.884 0.382

[8]

5177 XC2VP20-7 21.54 168.3 84
4.161

1.352

[12] 12600 XCV1000 –6
12.1

 80 0.960 0.530

[13] 2136 XCV-812 2.87 22.41 100 1.343 0.192

[14]

4901 XC2V4000 23.57 95 4.810 1.381

[11]

2000 XCV812E 12.02 244 6.010 0.361

[15]

3576 XC2V6000-6 24.92 194.7 80 6.970 1.803

[10]

3775
Virtex V-

SX50T2-3ff1136
56.3 440 80 14.914 4.017

Ours 4,258
Virtex V-

XC5vlx50-3ff676
35.8 279.822 27 8.408 4.641

III. XTS-AES ALGORITHM

Figure 1 [16] shows the encryption architecture of AES-

XTS. Key 2 is used to encrypt the tweak while key 1 is used to

encrypt the plaintext. The encryption of tweak/data using AES

involves four steps as outlined in [17], namely Byte-

Substitution, Shift-Row, Mix-Column and Add-Round-key.

During the ten rounds of encryption process, Mix-Column is

not performed in the end. For AES encryption, a key

expansion method is used to generate the round keys. The

round keys can be generated using either pre-computation

method or on the fly method.

AES

Encryption

AES

Encryption

Key II

i

P

PP

Key I

CC

C

T

Fig. 1. AES-XTS Encryption block diagram

A. Multiplication by a primitive element

A 16-byte value which is generated after AES encryption is

multiplied by , where is a primitive element of GF().
This multiplication is done in following manner

Input: is the power of
 byte array: []

Output: byte array: [] , where where

 [] is the first byte of the AES block.

The output array is defined repeatedly by the following

formula where is iterated from to . Equation (1) is used to

calculate the output array recursively

 [] (([])) ([])

 [] (([])) [] ,
 (1)

B. XTS-AES Encryption/Decryption Procedure

The XTS-AES encryption or decryption involves one

process in common that is tweak value encryption. Depending

upon the core implementation, there is either data encryption

or decryption. For XTS-AES encryption to work; the value of

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

7

128-bit tweak needs to be encrypted using AES algorithm

using key 2. After tweak encryption, there is a modular

multiplication with . The resultant is exclusive OR with

plaintext or ciphertext depending on the function of the core.

Then there is a either data encryption or ciphertext decryption

using key 1. For encryption within XTS-AES, the keys have

been computed on-the-fly; while for decryption; the sub-keys

need to be pre-calculated. After the data encryption or

decryption process, there is final exclusive OR with resultant

of modular multiplied value to get the final ciphertext or

plaintext.

The process of AES-XTS encryption/decryption, can be

summarized using following equations.

1) ()

2) ()
3) ()()
4) ()

Where

 Bit-wise XOR (Exclusive OR) operation

 Modular multiplication of two polynomials over the

binary field GF(2), modulo ,

 , A primitive element of () that corresponds to

polynomial (i.e., 0000…0102); In both Gal`ois Field is

abbreviated as GF.

IV. PROPOSED HARDWARE ARCHITECTURE

This work has been focused to achieve a sustainable

throughput for the secondary storage devices that involve

different data transfer standards e.g., SATA. The aim of this

work is to not only get the higher throughput but with

minimum area so that higher efficiency (Throughput/Slice)

and (Throughput/Area) is obtained. The main contribution of

this work is to integrate such kind of techniques that helps us

in achieving high performance. The techniques include use of

parallelism e.g., Pipelining and sharing of resources that helps

in achieving the higher throughput with minimum area. In the

AES-XTS algorithm, the resource sharing can be done for

tweak value encryption and data encryption as single core can

be used to do both in a time multiplexed method. Further there

could be resource sharing for data encryption and round key

generation as they use the same Substitution Box (Sbox).

Further the modular multiplication is being done in parallel to

the last block data encryption/decryption to minimize

computing cycles. After incorporating all these techniques our

core has reached a throughput of 35.8 Gb/sec, that is sufficient

for SATA III data transfer rate, and also would be able to

match to the data rate standards which requires higher

throughput for data encryption/decryption in future. We first

designed our AES-XTS core in an iterative fashion and results

were verified using test vectors present in FIPS P1619

standard [16]. After verification of the results we pipelined our

design and got the highest efficient (TPA) design using fully

unrolled outer round pipelined technique. We used single core

for data as well as for data encryption. Our primary focus of

this implementation was not only to achieve high throughput

but also an efficient one. The proposed AES-XTS architecture

is depicted in figure 2. Our core is capable of processing all

inputs as being given in original AES-XTS approved standard.

Fig. 2. XTS-AES Pipelined Implementation Block Diagram

Following considerations were taken into account for the core to operate

1) The and has been taken input in the chunk of 64 bits.

The reason of this width selection is due to our FPGA I/O

constraint as our selected FPGA has limited I/O pins.

Therefore a trade off was done for the selection of width of no

of input and output pins. As data encryption can not start until

tweak value encryption therefore we have kept the width of

these two pins at 64 bits.

2) The width of is set to 32 bits as this is required for

data encryption/decryption and this process can not start until

tweak value is encrypted so we can load this in 4 clock cycles

parallel to the other processes being done.

3) The width of plaintext and ciphertext is set to 128-bits each

so our core could be able to produce 128-bits output at every

clock cycle.

The AES algorithm processes 128 bits data in a pipelined

fashion to give the encrypted tweak value or cipher-text in

time multiplexed method. The only encountered delay is due

to tweak value encryption. After this initial delay, at every

clock cycle, the data is being encrypted or decrypted.

 The implementation uses fully unrolled pipelined design

that incorporates outer round pipelined technique. During the

tweak value encryption the data being provided need to be

buffered. Therefore we have used a buffer of 1920 bits to store

the data. Key I is loaded in the 32 bits form since it is required

for data encryption and it will not consume any cycles because

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

8

during tweak value encryption it is loading in parallel. Our

core is generating ciphertext of 128 bits so there is an initial

delay of data loading cycles and tweak value encryption. Once

the pipeline is full, successive blocks are encrypted one after

another and generate cipher-text of 128 bits at every clock

cycle. Since tweak value need to be encrypted before data

encryption, therefore we have used time multiplexed method

to use the same pipelined core to do the both thus providing a

significant savings of hardware area.

A. Tweak Value Calculation

One of the significant features of our XTS-AES

implementation is calculation of tweak value. Each time,

encrypted tweak value is multiplied by in a recursive

manner. Our proposed design calculates this value in parallel

to the data encryption or decryption thus minimizing the

computing cycles of the output to be calculated. The initial 26

cycles includes 1 initialization cycle, 2 loading cycles for key

2 and I, 10 processing cycles for tweak value encryption and

10 for data encryption and 2 for exclusive or processes and

one for output. Figure 3 shows diagrammatic representation of

the no of bits versus no of processing cycles. The figure shows

that after certain period of time, the number of clock cycles is

only a function of no of bits being processed.

Fig. 3. No of Cycles versus No of bits processed

In the same way our measured throughput reaches at 35.8

Gbps as the number of bits processed is 256K. After this point

our measured throughput settles down at 35.8 Gbps. Figure 4

gives a diagrammatic representation of Throughput versus no

of bits processed.

Fig. 4. Throughput versus No of bits processed

B. Key Expansion Module

The key expansion module was used to generate the sub-

keys for the data encryption and decryption. The round keys

can be generated either using pre-computation method or on-

the-fly method. For the tweak value encryption we generated

each round key on-the-fly parallel to the encryption process.

For data encryption, the sub-keys were calculated during the

tweak value encryption process. In the case if key 1 is changed

then its sub-keys can also be generated on-the-fly. For data

decryption, all sub-keys need to be calculated prior to the start

of the data decryption process. For this purpose we have taken

an advantage of the algorithm such that all sub-keys of key 1

were calculated during the tweak encryption process. However

during the data decryption process, if key 1 is changed then

the throughput may be limited but this chance is unavoidable

as the same key is used to decrypt the data that was used to

encrypt it. The use of Substitution Boxes is shared for round

key generation and data encryption thus minimizing the area

requirements for the overall algorithm.

V. RESULTS AND DISCUSSION

The design was developed using Verilog HDL and

simulated using Xilinx ISE Webpack 12.3. This section shows

the results after successful synthesis, map and place and route.

The validation and verification was done using Virtex 5 FPGA

with ff676 package, speed grade -3 (Virtex V- XC5vlx50-

3ff676). The results are also being compared with the existing

other AES-XTS results to date. Our design was tested using

the test vectors available in NIST P1619 [16]. Several design

parameters were considered for an effective comparison.

These parameters include 1) Throughput 2) Efficiency

(Mbps/slice) and (Mbps/Area). The throughput is being

calculated using Eq (1).

Throughput = (Data_block_size * Clock Frequency)/Clock

cycles (1)

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

9

Table II and Table III shows the complete hardware resource

summary for the XTS-AES encryption and XTS-AES

decryption after place and route report.

TABLE II

AES-XTS PIPELINED ENCRYPTION RESOURCES SUMMARY

A. AES-XTS Decryption Results

Using the same technique used for the pipelined encryption

we have implemented AES-XTS pipelined decryption. The

major difference between both implementations is due to that

AES-XTS decryption uses tweak value encryption as well as

data decryption therefore it has resulted in lower throughput

with more number of slices. The implementation of fully

unrolled pipelined decryption design resulted in a maximum

throughput of 30 Gb/sec with 28 Block RAMs and 5,117

slices. The Efficiency of the system that is throughput/slice

can be calculated as Efficiency= 30 Gb/sec/5,117=5.86

Mb/sec/slice

Table III. shows the hardware resource summary of the

XTS-AES pipelined decryption implementation.

TABLE III

AES-XTS PIPELINED DECRYPTION RESOURCES SUMMARY

Number of Slice LUTs 14,152

Number of occupied Slices 5,117

Number of LUT Flip Flop pairs used 15,085

Number of bonded IOBs 418

Number of BlockRAM/FIFO 28

Frequency 234.709MHz

Throughput 30 Gb/sec

VI. COMPARATIVE ANALYSIS

There are numerous AES FPGA pipelined implementations

with different modes. From Table I, it seems that one of the

designs given by Drimer [10] has got the highest throughput in

all of the designs but the efficiency of the design is reflected if

measured in terms of Mbps/Area. In our proposed design we

have calculated efficiency but most of the designs present in

literature do not provide this information. The throughput and

efficiency achieved by [10] is the highest one but with the

expense of high number of BRAMs that are 80. Another

design given by [15] has got better efficiency but it also

includes high number of BRAMs. Our design has got the

second highest efficient design. But after inclusion of

throughput/area parameter that includes BRAMs also (1

BRAM=128 slices), our design has got the best throughput/

area result. Therefore in conclusion we can say that the Drimer

design has got the highest Mbps/slice while our design has got

the highest throughput/area. In calculation of Efficiency

(Mbps/slice), we have listed two efficiencies for our design

and the design given in [10] since they are implemented on

Virtex 5 and in this device a slice is made up of 4 LUTs

instead of 2 for previous Xilinx devices.

VII. AES-XTS DECRYPTION COMPARISON WITH AES

DECRYPTION IMPLEMENTATIONS

Table IV compares our AES-XTS decryption

implementations to the AES decryption implementations to

date. In the existing literature there are only few decryption

implementations. The implementation given by S.M. Yoo

(Yoo, Kotturi et al. 2005) has got an efficiency of 4.3

Mbps/slice with an inclusion of 200 BRAMs. Also this

implementation may not include key expansion. This

implementation uses the pipelined methodology. In

comparison to our pipelined implementation our design has

got 5.86 Mbps/slice which is relatively better. Other

decryption implementations based on iterative method has got

better throughput than that of us but our design has got best

throughput/area relative to other two designs

TABLE IV

COMPARISON WITH AES DECRYPTION IMPLEMENTATIONS

Ref Mode CLB

Slices

Device

Throughput

(Gpbs)

Block

RAM

Eff

(Mbps/

slice)

Eff

(Mbps/

Area)

[13] Dec 5677 XCV 2000 E 4.121 0 0.72 0.72

[9]

Dec

Pipelined

6541 Virtex-II Pro 28.44 200

4.34 0.88

[11]

Dec

Iterative

2121 XCV600E 0.557 18 0.26 0.13

Ours

Dec 5117/

10234

Virtex V- XC5vlx

50-3ff676

30 28 5.86/

2.93

3.44

Table V shows the comparison of our XTS-AES

implementations to existing AES-XTS implementations to

date. According the results shown, there are only few

implementations of XTS-AES exist. These designs are low

throughput designs. The design given in [18] reports the

throughput of 2.8 Gbps while the same author in a modified

implementation reports the throughput as 3.5 Gbps. These two

designs are low throughput design and can match only the

speed of SATA I data transfer rate. SATA III standard

provides data transfer rate upto 6 Gbps therefore these two

designs given in [7] do not incorporate it. The design given by

Elliptic [19] has got the 10 Gbps but all other parameters are

not given in the product data sheet so that efficiency of the

design could not be truly interpreted. Our design has got the

highest throughput as well as highest Mbps/slice and

Mbps/Area.

Number of Slice LUTs 12,172

Number of occupied Slices 4,258

Number of LUT Flip Flop pairs used 12,458

Number of bonded IOBs 418

Number of BlockRAM/FIFO 27

Frequency 279.822MHz

Throughput 35.8 Gb/sec

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 4, ISSUE 1, 2014

10

TABLE V

COMPARISON WITH XTS-AES IMPLEMENTATIONS

VIII. CONCLUSIONS

In this paper a high efficient AES-XTS FPGA core

implementation is presented. The design incorporated several

techniques that included outer round pipelining, use of single

core to do the tweak encryption as well as data encryption and

calculation of tweak in parallel to the data encryption. After all

these optimizations, our design occupied 4258 slices only with

a throughput of 35.8 Gb/sec. Our design not only provided an

increased throughput compared to the other implementations

but it is also the efficient in terms of throughput/slice which is

8.4 Mbps/Slice. Future work includes optimization of the

algorithm to further reduce the slice count as well as

increasing the throughput.

REFERENCES

[1] C. Laird, "Taking a hard-line approach to encryption," Computer,

vol. 40, pp. 13-15, 2007.

[2] K. Scarfone, et al., "Guide to storage encryption technologies for
end user devices," NIST Special Publication, vol. 800, p. 111,
2007.

[3] L. Hars, "Discryption: Internal hard-disk encryption for secure
storage," Computer, vol. 40, pp. 103-105, 2007.

[4] A. J. Elbirt, et al., "An FPGA implementation and performance
evaluation of the AES block cipher candidate algorithm finalists,"
in Proc. 3rd Advanced Encryption Standard (AES) Candidate
Conference, New York, 2000.

[5] G. Saggese, et al., "An FPGA-based performance analysis of the
unrolling, tiling, and pipelining of the AES algorithm," Field
Programmable Logic and Application, pp. 292-302, 2003.

[6] F. X. Standaert, et al., "Efficient implementation of Rijndael
encryption in reconfigurable hardware: Improvements and design
tradeoffs," Cryptographic Hardware and Embedded Systems-
CHES 2003, pp. 334-350, 2003.

[7] K. Jarvinen, et al., "Comparative survey of high-performance
cryptographic algorithm implementations on FPGAs," IEE
Proceedings on Information Security, vol. 152, pp. 3-12, 2005.

[8] A. Hodjat and I. Verbauwhede, "A 21.54 Gbits/s fully pipelined
AES processor on FPGA," in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, 2004, pp. 308-309.

[9] S. M. Yoo, et al., "An AES crypto chip using a high-speed parallel
pipelined architecture," Microprocessors and Microsystems, vol.
29, pp. 317-326, 2005.

[10] S. Drimer, et al., "DSPs, BRAMs, and a pinch of logic: Extended
recipes for AES on FPGAs," ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 3, p. 3, 2010.

[11] M. McLoone and J. V. McCanny, "Rijndael FPGA
implementations utilising look-up tables," The Journal of VLSI
Signal Processing, vol. 34, pp. 261-275, 2003.

[12] K. Gaj and P. Chodowiec, "Fast implementation and fair
comparison of the final candidates for Advanced Encryption
Standard using Field Programmable Gate Arrays," Topics in
Cryptology—CT-RSA 2001, pp. 84-99, 2001.

[13] N. A. Saqib, et al., "AES algorithm implementation-an efficient
approach for sequential and pipeline architectures," in Computer

Science, 2003. ENC 2003. Proceedings of the Fourth Mexican
International Conference on, 2003, pp. 126-130.

[14] J. Zambreno, et al., "Exploring area/delay tradeoffs in an AES
FPGA implementation," Field Programmable Logic and
Application, pp. 575-585, 2004.

[15] J. M. Granado-Criado, et al., "A new methodology to implement
the AES algorithm using partial and dynamic reconfiguration,"
INTEGRATION, the VLSI journal, vol. 43, pp. 72-80, 2010.

[16] I. S. i. S. W. Group, "IEEE P1619/D19: Draft standard for
cryptographic protection of data on block-oriented storage
devices," ed: July, 2007.

[17] P. FIPS, "197," Advanced Encryption Standard (AES), vol. 26,
2001.

[18] E. Hatzidimitriou, et al., "Exploration and enhancement of P1619-
based crypto-cores for efficient performance," in Consumer
Electronics (ICCE), 2011 IEEE International Conference on, 2011,
pp. 361-362.

[19] Elliptic, "XTS-AES Core," ed, 2009.

Device Slices
Frequency

 MHz

Throughput

 Gbps

BRAMs

Efficiency

Throughput/
Slice

(Mbps/Slice)

Efficiency

Throughput/
Area

(Mbps/Area)

Ref

Virtex 5 1470 209 2.8 0 1.9 1.9 [18]

Virtex 5 1616 - 3.5 0 2.16 2.16 [18]

- - - 10 - - - [19]

Virtex 5-3 4,258 279.822 35.8 27 8.40 4.64
This

work

