
SSURJET

Sir Syed University Research Journal of Engineering & Technology

2022, Vol. 12, No. 1,

https://doi.org/10.33317/ssurj.421

Creative Common CC BY: This article is distributed under the terms of the Creative Commons Attributes 4.0 License.

It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

78

Empirical Analysis of Vulnerabilities in

Blockchain-based Smart Contracts

Kashif Mehboob Khan1, and Ansha Zahid2

1Department of Software Engineering, NED University of Engineering and Technology, Karachi. Pakistan
2Department of Computer Science and Information Technology, NED University of Engineering and Technology, Karachi. Pakistan

 Correspondence Author: Kashif Mehboob Khan (kashifmehboob@neduet.edu.pk)

Received January 10, 2022; Revised March 16, 2022; Accepted April 21, 2022

Abstract

With the evolution of technology, blockchain a swiftly impending phenomenon i.e., "decentralized computing” is observed.

The emergence of Smart Contracts (SC) has resulted in advancements in the application of blockchain technology. The

Ethereum network’s computing capabilities and functionalities are founded on the basis of SC. A smart contract is a self-

executing agreement between buyer and seller with the terms of the settlement between them, written directly as lines of code,

existing across a distributed decentralized blockchain network. It is a decentralized software that runs on a blockchain

autonomously, consistently, and publicly. Conversely, due to the complex semantics of fundamental domain-specific languages

and their testability, constructing reliable and secure SC can be extremely difficult. SC might contain some vulnerabilities.

Security vulnerabilities can originate from financial tribulations; there are a number of notorious events that specify

blockchain SC could comprise numerous code-security vulnerabilities. Security and privacy of blockchain-based SC are very

important, we must first identify their vulnerabilities before implementing them widely. Therefore, the purpose of this paper is

to conduct a comprehensive experimental evaluation of two current security testing tools: Remix solidity static analysis plugin

and Solium which are used for static analysis of SC. We have conducted an empirical analysis of SC for finding tangible and

factual evidence, controlled by the scientific approach. The methodology’s first step is to gather all of the Ethereum SC and

store them in a repository. The next step is to use the Remix solidity static analysis plugin and Solium to perform vulnerability

assessments. The last step is to analyze the result of both tools and evaluate them on the basis of accuracy and effectiveness.

The goal of this empirical analysis is to evaluate the two FOSS tools: Remix solidity static analysis plugin and Solium on the

basis of accuracy and effectiveness. Some research questions were considered to reach the stated goal: What automated tools

and frameworks are proposed in supporting the state-of-the-art empirical approach to SC vulnerability detection? How

accurate are security analysis tools? And which tool has more accuracy rate? How effectively security analysis tools are

detecting vulnerabilities in SC? And which is the most effective security analysis tool? We investigated the effectiveness and

accuracy of security code analysis tools on Ethereum by testing them on a random sample of vulnerable contracts. The results

indicate that the tools have significant discrepancies when it comes to certain security characteristics. In terms of effectiveness

and accuracy, the Remix plugin outperformed and beat the other tool.

Index Terms: Blockchain, Smart Contracts, Ethereum, Static Code Analysis, Security.

I. INTRODUCTION

There has been a surge of interest in blockchain technology

and cryptocurrency from both the academic community and

the industry. Essentially, blockchain technology is a

decentralized public ledger that relies on encryption to

securely host apps, send digital currency, and store data on

the network. It is no secret that Ethereum is one of the most

popular blockchain systems, based on the existing

cryptocurrency market capitalization. During one of the

panel discussions, Vitalik Buterin [1], the core Ethereum

founder, described Ethereum as a general-purpose

blockchain. This means that the Ethereum network is

sufficient to facilitate algorithms written in general-purpose

programming languages. A range of applications may be

created from basic wallets to complex financial systems,

energy-trading platforms, and even new and unique

cryptocurrency systems. As an alternative to developing a

distinct blockchain for each use case or application, smart

contracts may serve multipurpose domains of applications

[2].

A. Motivation

In recent years, Smart Contracts (SC) have become more

and more popular and are considered to be the next

generation of automation based on agreements between

Kashif Mehboob Khan et al,

79

parties in a blockchain system. The idea of a ‘Smart

Contract’ was first envisioned at the source code level. In

blockchain programming (including the development of

smart contracts) and also in other computing paradigms,

code-based testing is still preferred and considered effective

because it determines a decent standard of dependence on

the most comprehensive artifact of the development process

prior to actually deploying it to the hosting environment.

Furthermore, static security analysis before the deployment

of SC appears to be an ideal solution, due to the unique

structure of blockchain-based SC. Based on these

considerations, this paper concentrates largely on the

automated static SC security mechanisms on the Ethereum

blockchain by concentrating its emphasis on Solidity. SC

are independent agreements implemented using software,

and their implementation ensures compliance with

calculation and measurement conditions. SC's major goal is

to encourage the replacement of traditional trusted third

parties (authorities, entities, or organizations) with bits of

code operating on a decentralized and immutable system.

This new approach to SC applications offers up hundreds

of new possibilities. IoT security and forensics are one of

the most potential topics which have attracted a lot of

attention from academics as well as the corporate world [3-

5]. In reality, blockchain’s implementation and use have far

outstripped its initial goal as the foundation of the world's

first decentralized cryptocurrency. Other sectors have

realized the advantages of a trustless, decentralized ledger

with historical immutability and are trying to apply the

basic ideas to existing business operations. Because of the

blockchain’s unique features, its implementation in any

industry is an appealing notion. The main challenge in

blockchain-enabled IoT security is controlling and knowing

"who" will connect to the network across a huge number of

objects (e.g. Sensors and devices) without violating data

privacy [6]. Blockchain-based decentralized smart

contracts appear to be an important solution [7] and [8],

particularly when dealing with security vulnerabilities in far

dispersed IoT nodes [9]. Blockchain technology is critical

to achieving the security framework anticipated by SC, and

it looks to offer tremendous potential for future IoT

progress. However, blockchain technology is believed to be

safe and secure by design, its integrated applications which

are SC in dynamic settings (such as the Internet of Things)

may present vulnerabilities in real-world scenarios. Indeed,

such smart contract applications that govern nodes and

transactions are only segments of code created by human

developers. Furthermore, because of their unique nature,

errors or defects might have huge financial consequences,

therefore security is critical. Too far, smart contracts have

been damaged and harmed by unfortunate occurrences and

assaults (for example, a reentrancy fault in the split DAO

function resulted in a $40 million loss in June 2016, and $32

million was stolen by attackers owing to a flaw in the code

in November 2017). These high-profile cases indicate that

developers (even experienced ones) may leave security

issues and flaws in smart contracts, creating major

vulnerabilities for attackers to exploit [2]. Because of the

sheer breadth and pace of IoT settings, this would be

expanded much further. As a result of the complex

semantics of the underlying domain-specific languages and

their testability, developing trustworthy and safe SC may be

exceedingly challenging [10-21].

B. Related Work

This section of the paper consists of related work which

includes different vulnerability analysis tools, approaches,

surveys, and experiments in this area. There are a number

of security analysis tools available for detecting SC

vulnerabilities. Different types of technical methods were

used in these tools for the implementation of security

analysis on SC.

Empirical analysis of Free and Open Source Software

(FOSS) tools is conducted by Reza M. Parizi and associates

for security testing and to achieve this objective it is

examined in terms of vulnerability detection and how

effective and accurate these automated smart contract

security testing tools are. The four FOSS tools namely

‘Oyente’, ‘Mythril’, ‘Security’, and ‘SmartCheck’ were

empirically analyzed based on their vulnerability detection

effectiveness and accuracy. Out of four automated security

testing tools, SmartCheck is statistically more effective

having a 95 % significance level but in terms of accuracy,

Mythril tool showed the highest accuracy score with issuing

the lowest number of false alarms among peer tools, though

it had less effectiveness than SmartCheck, however, Oyente

missed a large number of threats and it was considered to

be the least effective tool out of all four, Security is the tool

which showed a stable performance throughout testing It

had a large number of false positives but is still catching

more threats that Oyente was missing. So it can be

concluded that SmartCheck is the most effective security

testing tool for smart contracts developed in Solidity on the

Ethereum blockchain but it is less accurate than Mythril

[22].

Haijun Wang and fellow researchers proposed a new tool

for detecting vulnerabilities known as ‘VOLTRON’ which

will detect irregular transactions. The main purpose of

smart contracts is to manage the transfer of assets and

perform bookkeeping. There are two invariants in smart

contracts for transactions, Balance invariant and

Transaction invariant. The approach behind this tool was to

use proposed balance and transaction invariants to detect

vulnerabilities. According to the balance invariant, after a

transaction, if the bookkeeping balance is not updated

correctly it indicates that some irregular event has occurred.

It is the requirement of balance invariant that the difference

between contract balance and the sum of all participants'

bookkeeping balances remain constant. The transaction

invariant requires that the amount deducted from a

contract's bookkeeping balance is always deposited into the

recipient's account. The challenges in the proposition of

invariants include identification of bookkeeping variables,

handling of non-currency assets, and verification of

invariants. Four vulnerabilities were selected on which the

VULTRON approach was tested; these vulnerabilities are

Reentrancy, Exception Disorder, Gasless Send, and Integer

Overflow/Underflow. At last, it was concluded that the

approach presented in this paper detected all these

vulnerabilities [23].

A new model named ContractWard was proposed by Wei

Wang et al. for the detection of six different types of

vulnerabilities of smart contracts. This model was based on

Empirical Analysis of Vulnerabilities in Blockchain-based Smart Contracts

80

extracted static characteristics in order to secure the

contract layer on Ethereum and for the purification of

decentralized applications. In this paper, 3 supervised

ensemble classification algorithms, namely, ‘XGBoost’,

‘AdaBoost’ and ‘RF’, and two simple classification

algorithms, namely, SVM and KNN, together with two

sampling methods, namely, ‘SMOTETomek’ and

‘SMOTE’ were employed to conduct comparative

experiments. The effectiveness and efficiency of

ContractWard were demonstrated by the experimental

results. The previously available methods named Oyente

and Securify have a slower vulnerability detection speed as

compared to ContractWard, it is best for rapid batch

detection of vulnerabilities in smart contracts with an

average detection speed of four seconds per smart contract.

This model worked effectively on smart contracts written

in all high-level languages such as Solidity, Serpent, and

LLL. In the future, for the improvement of CounterWard,

designing anomaly detection models will be focused to

detect novel vulnerabilities in smart contracts [24].

A static analysis framework named Slither was described

by Josselin Feist and associates in their paper. The working

of Slither was defined as it first converts SC written in

Solidity into an intermediate representation called SlithIR,

which uses Static Single Assignment (SSA) form and

reduced instruction set to ease implementation of analyses

while preserving semantic information that would be lost in

transforming Solidity to bytecode. This framework will

provide automated detection of vulnerabilities, automated

detection of code optimization opportunities, improvement

of the user's understanding of the contracts, and assistance

with code review. The capabilities of Slither were evaluated

on real-world contracts. The bug detection capability of

Slither is faster than other tools, it detects 20 different types

of vulnerabilities of smart contracts. In terms of speed,

robustness, the balance of detection, and false positives,

Slither's bug detection is fast, accurate, and outperforms

other static analysis tools. These tools were compared with

Slither using a large dataset of 1000 smart contracts and the

result was manually reviewed [25].

Lei Pan et al. categorized the SC security analysis methods

into three types static analysis, dynamic analysis, and

formal verification methods. Static code analysis is the

method of debugging source code by automatically

examining it before the execution of a program. The static

analysis methods used in the paper by the authors, include

OYENTE, ZEUS, GASPER, Vandal, Ethir, and Securify.

Dynamic code analysis is a method that debugs the source

code of a smart contract while executing it during run time.

The dynamic analysis methods used in the paper include

MAIAN and Graph Construction. Formal verification

methods use mathematical formal methods or theorem

provers to prove the properties of SC. The formal

verification analysis conducted to validate and prove

vulnerabilities in SC includes F* Framework,

Formalization using Isabelle/HOL, and FEher interpreter

using Coq. These three security analysis methods were then

compared in terms of their accuracy, performance, and

coverage of finding vulnerabilities. It was concluded by Lei

Pan that static and dynamic analysis detects only defined

vulnerabilities; however, formal verification methods use

mathematical theorems and formal methods validate SC

properties with proofs [26].

Kalra et al. proposed the ZEUS framework for verifying the

validity and fairness of smart contracts. To swiftly verify

contracts for safety, ZEUS combines both abstract

interpretation and symbolic model checking, as well as the

power of constrained horn clauses. The authors created a

ZEUS prototype for Ethereum and Fabric13 blockchain

platforms, which they tested with smart contracts. 94.6

percent of contracts (worth more than USD 0.5 billion)

were found to be securely vulnerable, according to the

analysis [27].

According to our research, not a single research paper has

used solium and remix plugin (as it been included recently

in remix ide) and the vulnerabilities detected in our research

were also different than previously detected vulnerabilities

that's why we considered our research unique and better

than others.

Table 1: Popular Tools and their Characteristics in Existing Research

Tool
Analysis

Basis

Analysis

Type
Description

ZEUS
Source

code (.sol)
Static

ZEUS [27] can certify the
fairness of smart contracts

by verifying their validity.

ZEUS verifies the safe
programming practices of

susceptible smart contracts
by combining an abstract

interpreter with a symbolic

model checker.

Oyente
Source

code (.sol)
Static

OYENTE [28] is a static

analysis tool that finds
security vulnerabilities in

smart contracts. The inputs

are a smart con- tract's
bytecode and Ethereum’s

current global state. CFG

Builder, Explorer, Core
Analysis, and Validator are

the four modules of

OYENTE

Smart

Check

Source

code (.sol)
Static

SmartCheck [29] was

developed by the SmartDec

Security Team, it is an
automated static code

analyzer. It analyses Solidity

source code and examines
smart contracts for security

flaws and poor practices

automatically. It parses
smart contract code into an

abstract syntax tree, converts

it to XML, and uses XPath to
look for vulnerability

patterns.

Gasper Byte Code Static

GASPER is a static analysis
tool and was developed by

Chen et al. [30] in order to

discover smart contracts
with inefficient gas use.

Vandal Byte Code Static

Vandal [31] is a framework

for analyzing Ethereum SC
for security flaws. To

transform EVM bytecode to

semantic logic relations, an
analysis pipeline is

employed.

Kashif Mehboob Khan et al,

81

C. Contribution

In this research work, we attempt to make the following

contributions to investigating and highlighting potential SC

vulnerabilities:

i. We have performed empirical analysis to

evaluate the two FOSS tools: Remix solidity

static analysis plugin [32] and solium [33] on

the basis of accuracy and effectiveness.

ii. A methodology for detecting smart contracts

vulnerabilities has been proposed with our

own designed algorithm that has been

applied to show the effectiveness of our

proposed approach

iii. A comprehensive comparative analysis of

automated tools and frameworks is proposed

in supporting the state-of-the-art empirical

approach to smart contracts vulnerability

detection.

D. Organization

The paper has been organized as follows:

Section II contains the state-of-the-art techniques and

approaches which have been implemented in various tools

to determine the vulnerabilities and security loopholes in

smart contracts. Section III discusses in detail, about the

problem to be focused on and its proposed methodology.

Section IV and Section V highlight the experimentation and

results while Section VI concludes the paper.

II. STATE OF THE ART

There have been few state-of-the-art tools and approaches

which have been applied for detecting vulnerabilities in

smart contracts. Out of four automated security testing

tools, as mentioned in [22], SmartCheck is statistically

more effective having a 95 % significance level but in terms

of accuracy, Mythril tool showed the highest accuracy score

with issuing the lowest number of false alarms among peer

tools, though it had less effectiveness than SmartCheck.

However, Oyente missed a large number of threats and it

was considered to be the least effective tool out of all four,

Securify is the tool that showed a stable performance

throughout testing It had a large number of false positives

but is still catching more threats that Oyente was missing.

So it can be concluded that SmartCheck is the most

effective security testing tool for smart contracts developed

in Solidity on Ethereum blockchain but it is less accurate

than Mythril [22]. VULTRON approach was also proved to

be very effective against vulnerabilities such as Reentrancy,

Exception Disorder, Gasless send, and Integer

overflow/underflow. Upon testing, this approach was able

to detect all these vulnerabilities [23]. The capabilities of

Slither tool were evaluated on real-world contracts. The bug

detection capability of Slither is faster than other tools, it

detects 20 different types of vulnerabilities of smart

contracts [25].

III. PROBLEM STATEMENT AND ITS PROPOSED

SOLUTION

A. Problem Description

In this paper, our focus is to address the dilemma of smart

contracts' vulnerabilities and the effectiveness of their

accuracy by taking into account its number of functions and

line of code as a measure of its function for empirical

analysis against the (increasing) number of line of codes in

SC.

Figure 1: System Diagram

B. Solution Framework/Proposed Methodology

The research work in this paper attempts to increase the

efficiency of the vulnerability detection scheme to increase

the accuracy level by proposing a methodology. This

methodology includes various steps from the collection of

smart contracts to vulnerability analysis and incorporates

our proposed algorithm for the analysis of the

vulnerability.

The system diagram for our proposed work is shown in

Figure 1. The initial step is to gather all of the Ethereum

SC and store them in a repository. The second stage is to

use the Remix solidity static analysis plugin and Solium to

perform vulnerability assessments. The last step is to

analyze the result of both tools and evaluate them on the

basis of accuracy and effectiveness.

1: procedure ANALYSIS (Contract, StaticAnalysisTool)

2: BufferedReader contract

3: while BufferedReader ≠ EndofFolder do

4: StaticAnalysisTool BufferedReader[contract]

5:VulnerabilityAnalysisResult(tool, contract)

6:contract contract + 1

7: return detected vulnerability

Figure 2: Algorithm 1 Smart Contract Vulnerability Analysis

Empirical Analysis of Vulnerabilities in Blockchain-based Smart Contracts

82

IV. EXPERIMENTATION

We carried out the experiment for detecting vulnerabilities

in smart contracts using the proposed methodology as

shown in Figure 1.

A. Collecting Smart Contracts

Ethereum’s blockchain is an extremely useful resource for

collecting SC. Consequently, because they are kept in

bytecode format, analyzing them for vulnerabilities would

be difficult. We used EtherScan.io, a website that provides

information about Ethereum’s blockchain data and smart

contracts, in order to acquire smart contract source code for

our project. Using this website, developers may publish

their source codes and the website verifies that the source

code that corresponds to the bytecodes is put on the

blockchain so that anybody who wants to engage with a

smart contract can examine its source code, and logic, and

trust it more easily. However, EtherScan.io does not have a

collection of each and every smart contract implemented

and deployed on Ethereum’s blockchain, it does include a

substantial collection of smart contracts in the form of

source codes to be studied and analyzed. In addition, we

obtained a few contracts from etherscan, as well as a few

from other sources, such as github repositories.

Table 1: Smart Contracts used in the Experiment

Contracts
No. of

Functions
LOC Source

Reentrancy.sol 5 42 https://bit.ly/3oLlGDc

KingOfThe 6 170 https://bit.ly/3lqg13a

Reentrancy.sol 5 42 https://bit.ly/3oLlGDc

HoneyPot.sol 4 24 https://bit.ly/3FuzNm9

Auction.sol 3 53 https://bit.ly/3oNREi3

Roulette.sol 1 15 https://bit.ly/3oNbhql

TimedCrowd 2 21 https://bit.ly/3oOtGn0

HYIP.sol 3 20 https://bit.ly/3oKYq8j

EtherGame.sol 3 58 https://bit.ly/2YCNzCw

EtherStore.sol 2 20 https://bit.ly/3ArMWZE

EthTxOrder 2 32 https://bit.ly/3oT4ITv

GuessThe 3 21 https://bit.ly/2YHngv9

GuessThe 3 27 https://bit.ly/3lrwsfF

KingOfThe 6 170 https://bit.ly/3lqg13a

NEW_YEARS_ 7 70 https://bit.ly/3ArNsH4

OpenAddress
Lottery.sol

7 97 https://bit.ly/3AqoUhl

PredictThe 4 36 https://bit.ly/3lpBFEQ

Private_ 5 63 https://bit.ly/301jEnV

Race 2 47 https://bit.ly/3alP2zu

Rubixi.sol 17 136 https://bit.ly/2WVUnua

TimeLock.sol 3 21 https://bit.ly/301jEnV

TxOrigin 4 16 https://bit.ly/3Fw5j3g

Contracts
No. of

Functions
LOC Source

TxOrigin 3 11 https://bit.ly/3Fw5j3g

MyContract.sol 2 15 https://bit.ly/2YzhDP8

Return 2 16 https://bit.ly/3FwWAOf

Origin.sol 1 32 https://bit.ly/3FwWAOf

ETPlanV3.sol 23 340 https://bit.ly/3FwWAOf

B. Smart Contract Vulnerability Analysis Tools

Two analysis tools – Remix [32] and solium [33] -

examined the source code of the smart contracts. The source

code of the smart contracts was written in solidity language:

1) Remix Solidity Static Analysis Plugin:

Remix IDE is an online web-based and desktop program,

it is free and open source. Rapid development cycles are

encouraged, and a large number of plugins with intuitive

GUIs are available in this tool. When it comes to contract

development, Remix is the go-to tool. When smart

contracts are built and compiled, the Solidity Static

Analysis plugin performs static analysis upon those

contracts. Among other things, it checks for security flaws,

improper development methods, and bad coding practices.

2) Solium:

Solium examines and resolves style and security problems

in your Solidity code. Solium does not precisely adhere to

the Solidity Style Guide. The behaviors it imposes by

default are best practices for the community as a whole.

Security is a key consideration when creating blockchain

applications. The solidity code must be devoid of security

flaws. The main objective of the development of this tool

is to fix security concerns. In addition, it checks for

vulnerabilities in smart contracts and ensures that the code

is structured correctly.

3) Tools Analysis:

In order to analyze which tool performs best among the two

we have used two assessment methods: effectiveness and

accuracy. We restricted ourselves to 30 contracts due to the

time and effort required to analyze the contracts using the

assessed tools and check the tool's analysis results. The

execution time of both solium and Remix is 25 seconds.

V. RESULTS AND DISCUSSION

The acquired data is evaluated and analyzed in regards to

research questions RQ2 and RQ3. To manage both research

questions we have carried out an experiment using two new

security analysis tools which were not used in any previous

research. In order to calculate the effectiveness and

accuracy of the tools we will collect the four building-block

metrics;

 True Positive (TP) = Total count of contracts

perfectly detected as vulnerable by the tool

 False Positive (FP) = Total count of contracts

could not be detected as vulnerable by the tool

 True Negative (TN) = Total count of contracts

perfectly detected as non-vulnerable by the tool

Kashif Mehboob Khan et al,

83

 False Negative (FN) = Total count of contracts not

be detected as non-vulnerable by the tool.

The effectiveness of a security analysis tool in terms of

detection of vulnerabilities can be measured by Recall.

 𝑅𝑒𝑐𝑎𝑙𝑙 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) ∗ 100 (1)

Where;

TP is True Positive, and

FP is False Positive.

The accuracy score of a tool is measured as follows:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) (2)

Where;

TP is True Positive,

TN is True Negative,

FP is False Positive, and

FN is False Negative.

Table 1II: Confusion Matrix of Solium

True Negative

5

False Positive

0

False Negative

5

True Positive

20

Accuracy = TP+TN/(TP+TN+FP+FN)

20+5/20+0+5+5= 0.8333*100=83.3%

Table 1V: Confusion Matrix of Remix

True Negative

5

False Positive

0

False Negative

2

True Positive

23

Accuracy = TP+TN/(TP+TN+FP+FN)

23+5/23+5+0+2= 0.9333*100=93.3%

A. Analysis of Effectiveness

The effectiveness of the tools will be measured by how

many smart contract issues they were able to uncover from

our data set. As shown in Figure 2, our data set comprised

approximately 25 vulnerable smart contracts and the tools

that we have chosen for the experiment are Remix with

Solidity static analysis plugin and Solium. Firstly, we ran

these 25 vulnerable contracts on Solium and got an 80 %

recall rate which means that Solium is 80 % effective in

terms of vulnerability detection.

Figure 2: Comparison of the Effectiveness of the Security Analysis

Tool (Remix and Solium)

Then we ran our dataset of 25 vulnerable contracts on

Remix IDE and enabled a solidity static analysis plugin for

the detection of vulnerabilities. On Remix we got a 92 %

recall rate which indicates that the Remix plugin is 92 %

effective for the detection of vulnerabilities. After

analyzing the effectiveness rate of both tools, we can say

that Remix is more effective than the Solium tool.

B. Analysis of Accuracy

Accuracy refers to an instrument’s capacity to measure a

precise value. The degree to which a measurement is

accurate relates to how close it is to the correct value. A

measurement’s uncertainty is an estimate of how much the

measurement result might differ from this value. For

calculating accuracy, we have taken 25 vulnerable SC and

5 non- vulnerable audited SC because false positive and

false negative rates are used to determine accuracy, so we

require secure/trusted and tested smart contracts that are

bug-free or at least without false positives in order to

estimate the false-positive rates.

The accuracy rate of Solium is 83.3 % and Remix is 93.3

% as shown in Fig. 3. This means that Remix is giving

more accurate results as compared to Solium.

Figure 3: Comparison of the Accuracy of the Security Analysis Tool

(Remix and Solium)

Figure 4 shows a comparison regarding different

vulnerabilities that have been detected by Solium and

Remix. It can be seen here both the tools have a different

levels of vulnerability detection against different SC

vulnerabilities.

Empirical Analysis of Vulnerabilities in Blockchain-based Smart Contracts

84

Figure 4: Comparison of the Number of Vulnerabilities Detected by

Tools across Smart Contracts

VI. CONCLUSION

Distributed and decentralized applications are using

Ethereum SC as digitized agents. Assuring the security of

smart contracts will help to prevent needless losses and

harmful assaults. Numerous analysis techniques have been

built to verify and ensure the accuracy of the SC and their

non-vulnerabilities. In this paper, we gave a thorough

empirical review of two open-source automatic security

analysis tools for detecting security vulnerabilities in

Ethereum SC written in Solidity language. We put those

tools to the test on 25 real-world smart contracts to see how

effective they were at detecting vulnerabilities and how

accurate they were at it. The results of our experiment

showed that the Remix security testing tool for solidity

smart contracts is more effective and accurate statistically

than Solium. As far as the detection and mitigation of

security vulnerabilities in smart contracts are considered,

there is still plenty of room for improvement, such as a

greater effort to taxonomize them, automate the test

environments once the code analysis tools are out of beta,

or cutting the void in research on zero-day vulnerabilities.

The necessity of a secure development process should also

be understood by developers.

Acknowledgment

The authors would like to thank the NED University of

Engineering and Technology, Karachi. Pakistan, for all the

support, provided to accomplish this research work

Authors Contributions

In this research work, the authors attempt to make the

following contributions to investigating and highlighting

potential smart contracts' vulnerabilities;

We have performed empirical analysis to evaluate the two

FOSS tools: Remix solidity static analysis plugin and

solium on the basis of accuracy and effectiveness.

A methodology for detecting smart contracts

vulnerabilities has been proposed with our own designed

algorithm that has been applied to show the effectiveness

of our proposed approach

A comprehensive comparative analysis of automated tools

and frameworks is proposed in supporting the state-of-the-

art empirical approach to smart contracts vulnerability

detection.

The individual author contributions are as follows;

Kashif Mehboob Khan performed the conceptualization

and supervision of the paper while Ansha Zahid and Kashif

Mehboob Khan jointly carried out the investigation,

methodology, and draft preparation.

Conflict of Interest

There is no conflict of interest between all the authors.

Data Availability Statement

The data has been obtained from the github free repository

and the links have been provided in the experimentation

section where it has been evaluated.

Funding

This research received no external funding.

References

[1] Atzei, N., Bartoletti, M., & Cimoli, T. (2017, April). A survey of
attacks on ethereum smart contracts (sok). In International
conference on principles of security and trust (pp. 164-186).
Springer, Berlin, Heidelberg.

[2] Parizi, R. M., & Dehghantanha, A. (2018, June). Smart contract
programming languages on blockchains: An empirical evaluation of
usability and security. In International Conference on Blockchain
(pp. 75-91). Springer, Cham.

[3] Epiphaniou, G., Karadimas, P., Ismail, D. K. B., Al-Khateeb, H.,
Dehghantanha, A., & Choo, K. K. R. (2017). Nonreciprocity
compensation combined with turbo codes for secret key generation
in vehicular ad hoc social IoT networks. IEEE Internet of Things
Journal, 5(4), 2496-2505.

[4] Gao, C. Z., Cheng, Q., He, P., Susilo, W., & Li, J. (2018). Privacy-
preserving Naive Bayes classifiers secure against the substitution-
then-comparison attack. Information Sciences, 444, 72-88.

[5] Jhaveri, R. H., Patel, N. M., Zhong, Y., & Sangaiah, A. K. (2018).
Sensitivity analysis of an attack-pattern discovery based trusted
routing scheme for mobile ad-hoc networks in industrial IoT. IEEE
Access, 6, 20085-20103.

[6] Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018).
Internet of Things security and forensics: Challenges and
opportunities. Future Generation Computer Systems, 78, 544-546.

[7] Andersen, M. P., Kolb, J., Chen, K., Fierro, G., Culler, D. E., &
Popa, R. A. (2017). Wave: A decentralized authorization system for
iot via blockchain smart contracts. University of California at
Berkeley, Tech. Rep. Retrieved from
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-
234.html

[8] Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart
contracts for the internet of things. IEEE Access, 4, 2292-2303.

[9] Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R. (2018). Robust
malware detection for internet of (battlefield) things devices using
deep eigenspace learning. IEEE transactions on Sustainable
Computing, 4(1), 88-95.

[10] Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE
security & privacy, 2(6), 76-79.

[11] Parizi, R. M., Qian, K., Shahriar, H., Wu, F., & Tao, L. (2018, July).
Benchmark requirements for assessing software security
vulnerability testing tools. In 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC) (Vol. 1, pp.
825-826). IEEE.

[12] Chen, X., Zhao, S., Qi, J., Jiang, J., Song, H., Wang, C., ... & Cui,
H. (2022). Efficient and DoS-resistant Consensus for Permissioned
Blockchains. Performance Evaluation, 153, 102244.

[13] Wang, W., Song, J., Xu, G., Li, Y., Wang, H., & Su, C. (2020).
Contractward: Automated vulnerability detection models for
ethereum smart contracts. IEEE Transactions on Network Science
and Engineering, 8(2), 1133-1144.

[14] Ankit. E. (2019). Solidity Static Analysis. Retrieved From:
https://github.com/ethereum/remix-
ide/blob/master/docs/static_analysis.md

Kashif Mehboob Khan et al,

85

[15] Wood, G. (2014). Solium: analyzes your Solidity code for style &
security issues and fixes them. Retrieved From: URL
https://github.com/iost-official/Solium

[16] Ethereum-Wiki. (2022). Safety. Retrieved From:
https://github.com/ethereum/wiki/wiki/Safety

[17] Aldweesh, A., Alharby, M., Mehrnezhad, M., & van Moorsel, A.
(2021). The OpBench Ethereum opcode benchmark framework:
Design, implementation, validation and experiments. Performance
Evaluation, 146, 102168.

[18] Baliga, A. (2017). Understanding blockchain consensus models.
Persistent, 4, 1-14.

[19] Kremenova, I., & Gajdos, M. (2019). Decentralized networks: The
future internet. Mobile Networks and Applications, 24(6), 2016-
2023.

[20] Valenta, M., & Sandner, P. (2017). Comparison of ethereum,
hyperledger fabric and corda. Frankfurt School Blockchain
Center, 8, 1-8.

[21] Buterin, V. (2014). A next-generation smart contract and
decentralized application platform. white paper, 3(37), 2-1.

[22] Parizi, R. M., Dehghantanha, A., Choo, K. K. R., & Singh, A.
(2018). Empirical vulnerability analysis of automated smart
contracts security testing on blockchains. arXiv preprint
arXiv:1809.02702.

[23] Wang, H., Li, Y., Lin, S. W., Ma, L., & Liu, Y. (2019, May).
VULTRON: catching vulnerable smart contracts once and for all.
In 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER) (pp.
1-4). IEEE.

[24] Liu, Z., Wu, L., Meng, W., Wang, H., & Wang, W. (2021). Accurate
Range Query With Privacy Preservation for Outsourced Location-
Based Service in IoT. IEEE Internet of Things Journal, 8(18),
14322-14337.

[25] Feist, J., Grieco, G., & Groce, A. (2019, May). Slither: a static
analysis framework for smart contracts. In 2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB) (pp. 8-15). IEEE.

[26] Praitheeshan, P., Pan, L., Yu, J., Liu, J., & Doss, R. (2019). Security
analysis methods on ethereum smart contract vulnerabilities: a
survey. arXiv preprint arXiv:1908.08605.

[27] Kalra, S., Goel, S., Dhawan, M., & Sharma, S. (2018, February).
Zeus: analyzing safety of smart contracts. In Ndss (pp. 1-12).

[28] Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A. (2016,
October). Making smart contracts smarter. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications
security (pp. 254-269).

[29] Dika, A., & Nowostawski, M. (2018, July). Security vulnerabilities
in ethereum smart contracts. In 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) (pp. 955-962). IEEE.

[30] Chen, T., Li, X., Luo, X., & Zhang, X. (2017, February). Under-
optimized smart contracts devour your money. In 2017 IEEE 24th
international conference on software analysis, evolution and
reengineering (SANER) (pp. 442-446). IEEE.

[31] Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli,
V., ... & Scholz, B. (2018). Vandal: A scalable security analysis
framework for smart contracts. arXiv preprint arXiv:1809.03981.

[32] Albert, E., Gordillo, P., Livshits, B., Rubio, A., & Sergey, I. (2018,
October). Ethir: A framework for high-level analysis of ethereum
bytecode. In International symposium on automated technology for
verification and analysis (pp. 513-520). Springer, Cham.

[33] github.com. (2022). ConsenSys/mythril. Retrieved From:
https://github.com/ConsenSys/mythril

