SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

3D VIEW: Designing of a Deception from Distorted View-
dependent Images and Explaining interaction with virtual

World

*Syed Muhammad Ali, **Zeeshan Mahmood, and *** Dr. Tahir Qadri

Abstract- This paper presents an intuitive and
interactive computer simulated augmented reality
interface that gives the illusion of a 3D immersive
environment. The projector displays a rendered
virtual scene on a flat 2D surface (floor or table) based
on the user’s viewpoint to create a head coupled
perspective. The projected image is view-dependent
which changes and deforms relative to user’s position
in space. The nature of perspective projection is
distorted and anamorphic such that the deformations
in the image give an illusion of a virtual three
dimensional holographic scene in which the objects
are popping out or floating above the projection plane
like real 3D objects. Also, the user can manipulate and
interact with 3D objects in a virtual environment by
controlling the position and orientation of 3D models,
interacting with GUI incorporated in virtual scene
and can view, move, manipulate and observe the
details of objects from any angle naturally by using
his hands. The head and hand tracking is achieved by
a low cost 3D depth sensor ‘Kinect’. We describe the
implementation of the system in OpenGL and
Unity3D game engine. Stereoscopic 3D along with
other enhancements are also introduced which
further improves the 3D perception. The approach
does not require head mounted displays or expensive
3D hologram projectors as it is based on perspective
projection technique. Our experiments show the
potential of the system providing users a powerful,
realistic illusion of 3D.

Index Terms- 3D projection, head coupled
perspective, head tracking, Kinect, interaction

L INTRODUCTION

Humans possess 3D vision to perceive the structural
information about their surroundings. The shape and size
of object, lighting, view, perspective and stereoscopic
vision, etc. allow us to judge the characteristics of the
world around us. As the technology develops, computer
systems are aimed to duplicate the real world in a
computer environment. In order to give the illusion of

3D, we have to simulate the perceptual effects that can
create realistic experience. “The mind has a strong desire
to believe that the world it perceives is real” —John
Lanier.

The origin of virtual reality dates back to 1500, when
Italian artists painted two-dimensional surfaces mostly
walls or ceilings to give the optical illusion of a 3D space
by using some perspective tools and spatial effects. In
1968, first mechanical based head tracking experiment
completed successfully which provided ambitious
concept for head-coupled virtual reality

Systems Colin Ware implemented Fish Tank virtual
reality to view stereo images of 3D scene on a monitor
using a perspective projection coupled to the head
position of the observer [1], [2]. Rekimoto presented a
robust method for head tracking for Fish Tank VR using
computer vision by processing image frames from the
camera [3]. Johnny Lee in [4] proposed a system which
uses head tracking for desktop VR displays (television,
smart phone, tablet). He used set of Infrared LEDs on
wearable glasses with an infrared camera in the Wii-mote
to track the user’s head position. Changing the view
based on the head position created a realistic impression
of Fish Tank VR. C. Cruz-Niera in [5] has described the
CAVE system in detail where projectors are directed
towards the walls and ceiling of a cube-shaped room to
make immersive virtual reality. The trackers inside the
CAVE track the user’s head position precisely and
images are displayed by projectors based on where the
person is standing in the room.

Our project focuses to design an intuitive and interactive
computer simulated augmented reality that gives the
illusion of a 3D immersive environment. The projector
displays a rendered virtual scene on a flat 2D surface
(floor or table) based on the user’s viewpoint to create a
head coupled perspective. The projected image is view-
dependent which changes and deforms relative to user’s
viewpoint. The nature of perspective projection is
distorted and anamorphic, which need to be looked from
a particular point as shown in Fig.1. When viewed at a

*Department of Electronic Engineering Sir Syed University of Engineering & Technology, Karachi, Pakistan. malisq@hotmail.com,
**Department of Electronic Engineering Sir Syed University of Engineering &Technology, Karachi, Pakistan. engineer.zeeshan@outlook.com,
***Department of Electronic Engineering Sir Syed University of Engineering &Technology, Karachi, Pakistan. mqadri@ssuet.edu.pk

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

certain angle, the deformations in the image give an
illusion of a virtual three dimensional holographic scene
in which the objects are popping out or floating above the
projection plane like real 3D objects.

Fig.1. Anamorphic illusions created from distortion of 2D
image (source: http://julianbeever.net)

The estimation of the user’s head position in space is
carried out by using inexpensive 3D depth sensor
‘Kinect’. The depth image is processed with OpenNI
framework along with NITE middleware to retrieve the
3D position of the user’s head [6], [7]. The information
is then used to create a view-dependent projection of a
virtual scene by applying an off-axis perspective
projection. In addition to implementing head coupled
perspective, stereoscopic 3D with anaglyph rendering is
used to further improve the 3D depth perception. Also,
projecting shadows of the objects and applying texture
and parallax mapping greatly optimizes the user
experience. In this paper, the approach is implemented in
OpenGL and Unity3D game engine [8], [9]. To build an
immersive and interactive augmented reality experience,
natural full-body interactions are proposed. The user can
manipulate and interact with 3D objects in a virtual
environment by controlling the position and orientation
of 3D models, interacting with GUI incorporated in the
virtual scene by either his/her hands or can use pen or
wand based interaction. By using 3D hot points with
hand-tracking technique, the user is able to interact with
Ul elements in the scene and can view, move, manipulate
and observe the details of objects from any angle
naturally by using his hands.

The outline of the rest of the paper is as follows, Section
II will investigate the system model of the system relating
to each of the main stages of the work in detail. Section
IIT concludes the paper with applications, limitations and
future enhancements of the project.

II. SYSTEM MODEL

The overall work is composed of five fundamental
stages. The first stage describes the approach to track the
user’s head. The second stage investigates the
transformation from Kinect camera coordinates to
projection space coordinates. In the third stage, the off-
axis perspective projection or skewed camera is
explained. The fourth stage comprises of implementation
of the effect in 3D engine i.e. OpenGL and Unity 3D

along with some illusion enhancements. In the last stage,
it is described how a user can manipulate and interact
with virtual objects by using his body. The complete
block diagram of the proposed system is illustrated in
Fig.2.

Einect
coordinates to
projection space

Head
Trackineg

Apply off-axis
perspective
projection

Implementatio
nin 3D engine

Interaction
with 3D virtual

Fig.2. System model of the system
Head Tracking

The first stage of the system deals with the estimation of
the position of the user’s head in the environment. In
order to develop an augmented reality system in which
the perspective of the scene changes as the user moves
his head, the position of the eyes or head of the user must
be known. There are different ways to implement the
desired approach. The head tracking methods can
generally be classified into two types. One method
requires wearable sensors while the other implies vision
based techniques.

In head mounted sensor tracking, users have to wear
sensors which use technologies like Infrared, RF or
Ultrasound etc. The location of the head is then computed
based on the position of the sensor. An example of such
system is implemented by Johnny Lee in which he used
a set of Infrared LEDs on wearable glasses with an
infrared camera in the Wii mote to track the user’s head
position [4] [10]. Also, there is a commercial product
available called Track IR which allows to track the user’s
head with six degrees of freedom [11]. The product
consists of an optical capture device or camera and a head
mounted sensor called Track Clip. The Track Clip consist
of Infrared LEDs which is detected by the camera. The
disadvantage of such systems is that users have to wear
some sort of device and usually require line of sight
visibility, which limits the natural way of controlling
view-dependent perspective. The effect should work
seamlessly for everyone all the time without the need of
exchanging the sensors again and again. So, considering

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

the nature of the project, using head mounted sensors to
track the head position is inappropriate.

Fig.3. Track IR + Track Clip

On the other hand, vision based interfaces are feasible
and cheap nowadays and are most suited to the essence
of our research. There is a variety of algorithms available
for face detectors, body part detectors, pose estimation
and gesture training-testing. The Face API library by
Seeing Machines offers remarkable face-tracking along
with facial features [12]. It requires no hardware, but a
color camera. The limitation is that it needs good lighting
conditions and the user has to face the camera so that his
face is tracked. This is too restrictive for the project
application so we investigated depth cameras for
implementing head tracking.

With depth cameras or 3D time-of-flight sensors, we can
use different techniques to track the user’s head in 3D
depth images. Ehsan Parvizi proposed a head detection
algorithm which is based on contour analysis on depth
images to extract the curves of moving regions [13].
Another 3D head tracking system was described by Salih
Burak which is based on recognition and correlation-
based weighted interpolation [14]. Moreno also proposed
an adequate head tracking algorithm in which the head
shape is modeled by an ellipse with a trained color
histogram of skin and hair samples [15].

The majority of the available depth sensors is quite
expensive. In 2010, Microsoft launched Kinect which is
the first 3D depth sensor that allows users to interact
naturally through body gestures. It was made for the
Xbox360 console for a richer gaming experience, but by
taking the advantage of open USB connection of Kinect,
the open source drivers for PC were released. The drivers
provide access to Kinect depth and RGB image data
streams and soon it proved to be more than just a gaming
device. Now, it is widely used by developers to take
control of a wide variety of applications and robots also.
Also, Prime Sense Company released its own
programming framework called OpenNI (Open Natural
Interaction) to deal with Kinect data streams.
Implementing head tracking on 3D depth images from
scratch is complicated and requires the use of different

algorithms. Therefore, we used Kinect as a low cost
depth camera solution with an OpenNI framework along
with NITE (Natural Interface Technology for End-user)
to track user’s skeleton (head joint for now) in depth
image sequences. NITE is a high level middleware
developed by Prime Sense which provides algorithms for
effective hand and body joint tracking. Prime Sense
distribute these algorithms for commercial purpose and
keeps the code closed.

When the user enters into Kinect’s field of vision,
OpenNI detects the user’s presence and starts the
calibration process. After the calibration is successful,
the data of the user’s body joints are available. The x, y
and z coordinate of the tracked joint, i.e. the head is
constantly stored in 3D vectors. These values are then
further used to create a view-dependent 3D projection.
The next stage describes the transformation of head
position vector from the Kinect camera coordinates to
projection space coordinates.

Fig.4. Head is being tracked from depth images by using
OpenNI and NITE Middleware

I1I. KINECT CAMERA COORDINATES TO
WORLD SPACE COORDINATES

After the estimation of a user’s head position, the second
stage of the proposed system is the mapping of Kinect
camera coordinates to world space coordinates of the
projection or the calibration of the projector. The issue
here is that Kinect use different coordinate system. In
Kinect, the +y points downwards, +z points from the
Kinect towards the user and the origin lies at the top left
corner of the frame as shown in Fig.5. The coordinate
system of the projection plane is also shown.

Tay

Grigin (0,0)

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

Fig.5. Kinect coordinates system (left) and Projection
coordinate system (right)

In order to map the Kinect camera coordinates to the
world coordinates of the projection plane, few things
must be considered. First, the projection of the 3D scene
can be projected on any surface, table, wall or floor. In
our case, we are projecting it on the floor as shown in
Fig.6.

Fig.6. System configuration with Kinect, Projector, user and
projection space. The 2D image gives the illusion of a 3D
Helicopter

Now from Fig.6. by comparing the Kinect axes and world
space axes, we can see that the direction of x-axis is same
for both the system. But the y-axis of Kinect corresponds
to the z-axis of projection plane and similarly, the z-axis
of Kinect represents the direction of y-axis in the
projection plane. The Kinect provides 640 x 480
resolution depth image with a depth precision of 11 bit or
211= 2048 values per pixel. Let us denote (xh,yh,zh) be
the position of the user’s head and (xm,ym,zm) be the
world space coordinate of projection plane. Keeping the
above things in mind, we can write formulas for this
transformation,

Xm = (xp — 320).ky (1)
Vm = (1800 — Zn)-ky (2)

Zm = (v — 100).k, (3)

Where kx, ky and kz are the scaling constants which
define the sensitivity of the head movement and should
be adjusted manually depending on the size of the
projection space dimensions. The numeric values (320,
1800 and 100) were evaluated by positioning the user’s
head exactly at the origin of the surface of projection and
then noting the head coordinates from Kinect. The values
were found to be,

@g) B (58(2)080) @

Therefore, in order to obtain the correspondence between
Kinect coordinates and projection plane coordinates,
these formulas are created. Based on these values, we will
construct an accurate distorted perspective image that
would give a real 3D illusion to the user.

Apply Off-Axis Projection or Skewed Frustum

The next stage is to project a 3D scene on a 2D surface
(floor) in such a way that this distorted perspective gives
the user a real three dimensional perspective. So, the
process by which 3D models or objects are transformed
to 2D images implies “Perspective projection”. Since our
head-coupled system consists of a simple 3D virtual
scene, to render a three-dimensional scene on a two-
dimensional display screen, we need to determine where
on the screen each 3D point should be drawn. Let us
denote P(x,y,z) be the coordinate of any 3D virtual point
and P’(x’,y’,z’) be the coordinate of the point projected
on the 2D image plane as shown in Fig.7.

-""E-peo-l CamaTn

o l:l— 'rn. J'_._|

Fig.7. Projection of a point in 3D space to the projection plane

Also the coordinates of the viewpoint or camera in 3D
scene are the same as were determined in the second
stage, which was (xm, ym, zm). That means that the
camera movement in the 3D virtual scene is directly
coupled with the user’s head.

Now, how to determine the correct perspective projection
for every 3D virtual point P? Usually, the standard
camera most often used for viewing in computer graphics
uses a perspective projection matrix to perform a
perspective transform. The perspective projection matrix
is a 4x4 matrix that has very importance in the computer
graphics pipeline as many 3D renders including the most
common 3D rendering engine “OpenGL” uses it. To
implement this operation, we will multiply each point
P(x,y,z) in the scene with the perspective projection
matrix M frustum which is defined in equ. (5).

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

r+l
— 0

r-1

t+b

t-b t-b
f+n 2fn

0

P = Mfrustum- P = Q)

0 _E f-n
0 -1 0

0
0
0

Where r, 1, t, b, n and f are right, left, top, bottom, near
and far clip planes respectively. Fig.8. shows the view
frustum of a 3D scene which is bounded by six planes,
four of which correspond to the edges of the screen and
are called right, left, top and bottom frustum planes while
the remaining two planes define the minimum and
maximum distances at which objects in a scene are
visible to the camera and are called near and far frustum
planes.

Carmarn

Rigiht

Far
Fig.8. Left, right, top, bottom, near and far frustum planes

Consider the camera is centered with the image plane
parallel to the x-y plane. For a standard symmetric
viewing frustum, the values of the clipping planes have
the following relation, left = -right and top = -bottom. For
the near and far clip planes, it is better to keep them at a
fixed position in the world coordinate system. In our
case, we choose 0.3 for near and 1000 for the far clip
plane.

Skew Camera

We have described the transformation of a standard
perspective projection for the camera. The above
relations between frustum values are only true when the
camera is centered at the origin. Now as the user’s head
moves, camera also changes its position. If a camera
moves towards the right, the whole scene will appear to
be shifted towards the left in the camera view. In that
case, the left boundary of the image plane is surely not
equal to the absolute value of the right boundary. Also,
the top and bottom clip planes do not follow the standard
relationship. This is because the edges of the view plane
are not symmetric with the viewing direction. Consider
Fig.9. and note that the red points are the screen borders.
It is needed to consider the position of the 3D model
within the frustum. The key insight for achieving the
virtual reality is that these red points or borders remain
constant in the camera view despite the camera has
changed its position. The screen is something like a

window into the virtual reality, and to align the real world
with the virtual reality, we need to align the frustum with
that window [16].

-3
[C /

Fig.9. The red points remain constant in the camera despite the
changes in camera position

This is where an off-axis perspective projection or skew
camera comes into play. In order to align the frustum with
the screen borders, we have to modify the left, right, top
and bottom clip plane values in such a way that when
these values are put into a projection matrix, the screen
borders with each point lies within the view frustum. This
method centers the scene in the middle of the window and
stretches them to fit. The two terms in the projection

. r+l t+b . .
matrix, — and — are responsible for skewing or

distorting the scene.

To evaluate the values for the left, right, top and bottom
planes, first step is to compute the boundaries of the 3D
scene. This can be done by calculating the bounding box
for all the objects in the scene. The width and height of
the bounding box are then used to define the values of the
clipping planes which is as follows,

1 = Scale. (— Wisth - Xm) (6)
r = Scale. (Wijth —xm) (7)
b = Scale. (- —y,) (8)

t = Scale. (heizght - ym))

We will investigate about the “Scale” parameter in the
above equations later. Firstly, we discuss how these
formulas are created. Consider the movement of camera
along the x-axis. To stretch the scene to fit in the camera
view, the left and right planes are set by trial and error,
which are as follows,

For Camera: -8.85 <xm< 8.85
Left :09<1<-1.5
Right :1.5<r<-09

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

We have retrieved the correct left and right range values
for any given xm. But we need a mapping function which
should provide a mathematical relation between these
values. So, in order to re-map a number from one range
to another, a standard approach known as “Linear
interpolation” can be used which is illustrated in equ. (9).

] + Ymin (9)

y= [(YmaX_Ymin)- —~min_

Xmax~Xmin
Putting values in the above equation for left clip plane

results,

Xm— (—8.85)

1= [(_1'5 - 09). 8.85 - (—8.85)

] + 09 (10)

After simplifying, it gives,
1= 0.136(—2.21 — xp,) (11)

The value 2.21 here is approximately equal to the half of
the width of the bounding box for the 3D scene which is
4.4. The value 0.136 corresponds to the term “Scale” in
the equ. (5). Similarly, we evaluated the equations for
right, top and bottom clip planes.

r= 0.136(2.21 — x,)
b= 0.136(-1.25 —y,) (13)
t= 0.136(1.25 —yn,) (14)
Where, value ‘1.25” is half of the height of the scene.

(12)

The above relations for the left, right, top and bottom clip
planes perfectly stretch image to fit inside the view
frustum and skew it depending on the position of the
camera. But these formulas only work when the camera
is moved along x-y plane. Here the off-axis projection
properly works when camera lies at z=0. But what if the
camera is moved along z-axis also? Unfortunately, this
leads to the boundaries no longer remain constant in the
view and the frustum alignment gets destroyed. To
overcome this problem, the “Scale” value must be set in
such a way that the above relations for clipping planes
come true for any zm value. We set the z-axis range to 0
<zm< 1.75 to measure the values.

For every 0.25 increase in zm, we put the proper
“Scale”value by trial and error such that the off-axis
projection is correct for all the movements in Xy plane.
The results are shown in the table.

zm Scale
0 0.136

0.25 0.152
0.5 0.175
0.75 0.204
1 0.246

1.25 0.311
1.5 0.42

1.75 0.66

Table I: Relation between zm— and Scale

The graph between zm and Scale is plotted which is
shown in Fig.10. It is noticed that these values have a
non-linear relationship. The curve gets quite flat for the
values of zm greater than 1.25. It means that there is very
high precision at points closer to far plane and small
change in zm can greatly affect the Scale value. To
minimize this problem, the range of zm should be as
small as possible so we choose the range from 0 <zm<
1.25. Now to map the values of zm to the Scale values, a
fitting function is calculated for the set of data points. We
find best approximate fitting function by using different
regression techniques like Logarithmic, Exponential or
Power regression methods. For the relation between
above two variables, we found polynomial least square
fittings as the best approximation function with least
error which is illustrated in equ. (15).

Scale = 0.0506z}- 0.0647z3, + 0.0727z2, +
0.0513z, + 0.136

(15)

—

Fig.10. Graph between Scale and Zm
So in our case, the final values for the clipping planes are,
1 = Scale(—2.21 — x,,) (16)
amn
(18)
(19)

The above explained approach will result in a skewed
projection according to the viewing person’s head
position. The deformation of the image projected on the
surface when viewed from any direction gives a realistic

r = Scale(2.21 — x,,)
b = Scale(—1.25 —y,,)
t = Scale(1.25 — y,)

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

illusion of a 3D immersive environment. In the next
stage, we implement the proposed system in a 3D
rendering engine and describe how the illusion can be
enhanced by rendering shadows, shaders and using 3D
stereoscopy.

Implementation in 3D Engine

The previous three stages have investigated the view-
dependent 3D projection or head-coupled perspective
approach in detail. This stage describes the
implementation of the proposed system in OpenGL API
and Unity3D Game Engine. We will also explore
different techniques to enhance and improve the 3D
perception by using stereoscopy, shadows and shader

mapping.
OPENGL

OpenGL or Open Graphics Library is a cross-platform
API for rendering 2D and 3D graphics and it consists of
several methods and functions to deal with the operations
and programming of high quality 3D graphical objects.
To achieve hardware-accelerated rendering, OpenGL is
implemented with Graphics processing unit (GPU) and
as it is not platform-specific, it allows us to write an
application which can run on many different graphic
cards which increases the chance that the application will
continue to work when new hardware becomes available
[17].

In OpenGL, the camera does not move. It always stays
fixed at origin (0,0,0) in the scene, looking in the same
direction. To simulate the appearance of moving the
camera in a particular direction, we have to move all the
objects in the 3D world in the opposite direction. The
values (xm, ym, zm) now control the transformation of
the entire scene. Therefore, a slight modification is
needed in equ. (5) to equ. (8) so that the effect can be
implemented properly in OpenGL. The modified
equations are:
+ xm)

width
r = Scale.(2 +xm)

width

I = Scale. (- (20)

e2)

b = Scale. (— heizght + ym) (22)

height

t = Scale.(

+ Yim) (23)

The perspective projection matrix in equ. (5) is applied
by glFrustum function in OpenGL. The function takes six
parameters: left, right, bottom, top, bottom, near and far
values respectively and then creates the projection matrix
automatically.

To create a visually appealing demonstration of an
immersive 3D experience, it is an essential requirement
to animate the 3D scene and create an interactive
graphical user interface. In OpenGL, only graphic
rendering is concerned. It does not provide functions for
3D model animations, GUI designs and other amazing
features. This is where Game engines come in.

Iv. UNITY 3D

As previously discussed, OpenGL is a graphical API.
There is a large difference between Graphical APIs and
Game Engines. Graphical APIs provides programmers to
modify the parameters of the 3D objects precisely at a
basic level. In Game Engines, the designing and scripting
of the 3D world is done at a higher level and the majority
of the animation and rendering work is left in the
software to be automated. The graphical APIs are
therefore less useful for the application of this project as
the animations, rendering and modeling of 3D objects is
done by Game Engine quite easily and time-efficiently.
This is an advantage for developers to spend more time
on the algorithm. Unity 3D is a very popular development
engine for the creation of 2D and 3D games for desktop
platforms, consoles, mobile devices and web based
applications. It is flexible, multi-platform and user-
friendly. There is wide support available online and the
features like 3D models, environments, animations,
scripts, textures, shaders etc. are easily available at the
Unity asset store. There are also projects like Zigfu which
support Kinect directly in the Unity3D engine. That’s
why we designed our system in Unity3D.

We have created a simple virtual scene composed of'a 3D
apache helicopter model and a bricked floor. The
helicopter rotor is animated to spin such that it gives a
nice cool effect of taking-off. Unlike OpenGL, Unity3D
allows to move and rotate the camera. The “Cam
Projection Matrix” function applies the perspective
projection to camera view. In Fig.11. a few pictures of
our system are shown. The pictures are taken from
different viewpoints by placing the camera directly in
front of user’s eyes. The deformations in the rendered
scene of a helicopter give perfect 3D illusion. The full
demonstration of our system can be viewed online on our
website.

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

Fig.11. Pictures of our system taken from four different
viewpoints by placing camera directly in front of user’s eyes.
The resulting impression gives a realistic illusion of 3D

V. SMOOTH CAMERA MOVEMENT

So far we have achieved an effective head coupled
perspective. But there are some factors that limit the
naturalness of the impression of 3D system. Among
them, one issue is the precision and latency of the head
tracking system. The inaccuracy and lack of precision of
Kinect results in small rapid oscillations and jitters in the
estimation of head position. Since the camera is directly
coupled with the head position, it also fluctuates giving
an unrealistic perception. To reduce this problem, we
achieve smooth movement from point to point. Instead of

updating camera position instantly, we add a smooth
damp towards the target position. The position of camera
is non-linearly interpolated between the current position
and the target position by a damping factor of speed and
At. The camera position is equal to the previous position
of the lerp which is multiplied by the speed and At.

Where “Lerp” is a function to calculate linear
interpolation between two points and “speed” is a
damping parameter. The greater the speed, more quickly
the camera snaps to the target location. The resulting
motion of the camera is non-linear, i.e. the camera moves
quickly at first, but slows down as it reaches the target
position. The value of “speed” should be set precisely
because if it is set too small, then the user will observe a
delay and if it is set high, it will cause the projection to
jitter. We have to make a trade-off between smoothness
and delay.

VL SHADOWS AND SURFACE MAPPING

To optimize the user experience and to enhance the
illusion of 3D, we introduced shadows in the 3D scene.
Shadows hold very much importance as they help us to
understand the shape and characteristic of objects.
Without shadows, our 3D scene does not look practically
convincing and lacks realism. There are several methods
for casting shadows of the 3D objects. These methods

differ in quality and performance of the result. In
OpenGL, there is no direct support for projecting
shadows, but we can implement the techniques by
writing our own functions. Luckily, Unity3D makes it
possible to render real-time shadows easily and each
object can cast either hard or soft shadows on any plane.
So, we placed virtual directional lights in our virtual
scene and projected hard shadows of the 3D model on the
bricked floor plane.

In addition to projecting shadows, we used high quality
textures with parallax mapping to greatly enhance the
details and the appearance of the virtual scene. Texture
mapping in computer graphics refers to adding detail,
surface texture or color to a 3D model or surface while
the parallax mapping is applied to the textures to look like
as they have depth as the viewer’s eye or the camera
moves across the scene. Parallax mapping makes the
textures more realistic without the need of adding
complex geometry. The technique looks best on floors or
walls, thus we implemented it on a bricked floor in our
virtual scene.

Fig.12. Comparison between no-mapped and parallax mapped
floor and walls. Note the depth difference

One thing should be considered here is that when it
comes to render shadows, mapping textures and
advanced visual effects, there is a conflict between
performance and quality of the system. These methods,
although improving the quality of the 3D illusion, but due
to the complexity of objects, they decrease the
performance of the whole system.

VIL STEREOSCOPY

Using head tracking in virtual reality offers great and
effective 3D perception. It is noticed that the illusion of
virtual scene is more convincing when viewed with a
single eye. This is because with two-eyed viewing, there
is a depth cue conflict between the stereoscopically
perceived surroundings and the monoscopic projection of
the scene [18]. Therefore, the system can be further
improved by adding stereoscopic 3D. Stereoscopy refers
to presenting two slightly different, offset images, one for
each eye. These two images are perceived by our brain to
determine 3D depth of the view. Several methods like
Anaglyphs, polarized filters, shutter glasses or head

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

mounted displays exist to achieve the stereoscopic effect.
In color anaglyph systems, the two images are encoded
using filters of different chromatically opposite color
pairs, among which red/cyan combination is the most
common. The two differently filtered color images are
then placed on top of each other to form a single image
and when viewed through a color-coded anaglyph
glasses, a 3D stereoscopic image is perceived. The
anaglyph method is chosen for the project as it is cheap
and requires no special hardware or display systems
except a low cost anaglyph glasses. In Unity3D, the
effect is implemented by rendering two camera views,
one for each eye. Each camera is offset horizontally about
the central position and then encoded using red/cyan
color filters. Also, there are built-in assets available in the
Unity asset store that provide full control of all stereo 3D
parameters.

That pretty much covers everything we need to develop
an effective head coupled perspective that gives the user
an illusion of 3D immersive environment. It will be a
more interesting and practical approach if the user is able
to interact and manipulate objects in 3D scene with his
body or hands. The next stage describes the
implementation of interaction in virtual environments
through our body.

VIIL INTERACTION WITH 3D VIRTUALSCENE

This stage investigates the technique to build a real world
experience, in which a user can manipulate and interact
with 3D objects in virtual environments. The user can
control the position and orientation of 3D models,
interact with GUI incorporated in the virtual scene by
either his/her hands or can use pen or wand based
interaction. In our proposed system, we focus on
implementing full-body or hand based interaction.

3D Hot points

Coming back to the Kinect, so far we were accessing the
depth image which consists of x and y position along with
the depth of each pixel. Now, we construct a “Point
cloud” or a 3D space of a set of points by using x, y and
z (depth) values of each pixel. The point cloud is a 3D
version of, pixels in which each point usually contains
position information. The collection of all these 3D data
points makes them look like a cloud of points floating in
space. It is very useful way of visualizing or representing
the transformation of each Kinect’s pixel into a three
dimensional point.

In everyday life, we touch objects and it is the most
common and natural way of making interaction. In our
augmented reality system, 3D hot points are used to build

an interactive touch or hover triggered application. This
feature is inspired by the proposed work by Greg
Borenstein in his book “Making Things See” [19].
Basically, Hotpoint is an interactive 3D floating element,
particularly a cube or cuboid, which is drawn in a point
cloud at such position that it corresponds with an area in
the real world to which a user makes contact. To activate
a 3D hot point, it is required that some part of point cloud
or 3D data points lie inside the bounds of the element.
When the number of points inside the hot point exceeds
the defined threshold value, the hot point is activated. We
added various hot points exactly slightly above the
projection area such that when the user places his hands
or any other solid object inside the specified bounds of
hot point, then the touch or hover function is triggered.

Fig.13. Viewing point cloud from an alternate point of view.
Here the user is interacting with 3D Hot points (blue, red and
green boxes) in point cloud which are placed above the
projection area

In this way, the user can touch virtual objects in the air to
perform different functions. In our case, the color and the
animation of the spinning rotor of helicopter is triggered
with hot points. Also, the user interacts with UI elements
quite easily without even touching the projection surface
or screen.

IX. TRACKING HANDS

As said earlier in the first stage, the OpenNI framework
along with NITE (Natural Interface Technology for End-
user) has the ability to track user’s skeleton accurately.
We can easily access the position of any joint which is in
our interest and use this data to interact with 3D objects.
So, instead of loop checking each and every point in point
cloud whether or not it lies inside the hot point’s bounds,
a more time-efficient and practical approach is to check
whether the position of the user’s hands lie inside the hot
point’s bounds in point cloud. Besides touch or hover
functions, we have implemented a more intuitive way for

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

interacting with 3D virtual objects by controlling the
position and orientation of 3D models by using both
hands as if the user is holding the model in his hands and
manipulating it like a real object, thus creating a realistic
and richer user experience.

To implement a hand-based virtual interface, we need the
relative position and orientation data of both hands. The
position and angle between two hands is used to control
the position and orientation of 3D models in the virtual
scene. In 2D, only angle is needed because there is only
one plane in which vectors are rotated. But in three
dimensional rotations, an angle is needed along with the
direction or axis about which the rotation is made. The
representation is called Axis-angle method which
calculates both the axis and the angle to represent two

vector’s relative rotation. Let P and 6 be the 3D vectors
representing left hand and right coordinates respectively.

We calculate difference vector by subtracting 6 from P
which results in another vector D which represents the
direction from right hand left hand as well as the distance
between them.
D=P-Q (24)
To apply the orientation of vector D to our 3D model, we
have to define another vector that represents the
orientation of 3D model. We define the orientation of the
model as a unit vector M (1, 0, 0) pointing towards
positive x-axis because we want to point the width of the
model (the wider side of the model) in the direction of

vectorD. The angle © between the vectors M and Dls
calculated by applying dot product of both vectors.

© = cos~1(M.D) (25)

The axis A about which the angle works are given by the

cross product of two vectors MandD.

A=MxD (26)

Now we can apply the angle and axis information to our
3D model. The rotation for the axis-angle method can be
expressed in terms of a 3x3 rotation matrix R, defined in
equ. (27).
R(O) =
AZC + cos© AyA,C—A,sin© AA,C+Aysin©
AyA,C+ A, sin© A%C +cos© AyA,C—Aysin©O
A,AC—A,sin©® A,A,C+A;sin© AZC + cos©

@7

Where Ax, Ay and Az are the components of unit vector
A, O is the angle of rotation and C = 1- cosO. In Unity3D,

the function “Quaternion Angle Axis” rotates the 3D
model based on provided axis and angle values. Also the
model is translated and positioned based on the relative
position of both hands inside the projection of the virtual
scene. The above discussed methods provide impressive
interaction with virtual objects as if they are real. The
user is able to view, move, manipulate and observe the
details of objects from any angle naturally by using his
hands.

X. CONCLUSION

We introduced a cutting edge augmented reality system
in which the computer generated projection provides
users a powerful realistic illusion of 3D. It serves as a
basis for direct interaction with 3D immersive
environment. The projection cleverly adopts the
viewpoint of the user in real-time. The system allows the
user to walk freely in the immersive environment,
making interactions with hovering menus and virtual
objects by his body, thus pushing the limits of open
interactivity. Although combining stereoscopy with head
coupled perspective improves depth perception, the
illusion also works great with only using head coupled
perspective. The three dimensional head and hand
tracking from Kinect is effective and does not need
extraneous markers or sensors to wear, facilitating the
goals of the project. The system is currently limited to
providing the 3D illusion to a single user at a time,
viewers other than the tracked one will not be able to
perceive the effect. This restriction can be solved by
using the active shutter display system in which each user
sees its own perspective. Also, one of the limitations is
the poor depth capture of Kinect in outdoor sunlight. Our
approach proposed in the paper has proven to be the next
generation technology, which has applications in several
different fields. It can be used in military training
purposes to simulate the real situations. Also it delivers a
learning platform for medical learning and training. The
technology can be easily integrated with mobile devices
to build an interactive head coupled perspective. By
integrating the view-dependent projection in computer
games, it will make an entire game holographic thus
providing more immersive and realistic gaming
experience. The project can be enhanced by adding
support for providing the illusion to multiple users. The
algorithm can be improved by developing more
sophisticated techniques for isolating the projection
matrix. Also, multiple Kinects can be used in
combination to cover large spatial tracking zone. As the
technology develops, new possibilities will come
forward, which replace the real world with the simulated
one.

SIR SYED UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, VOLUME 7, ISSUE 1, 2017

REFERENCES

Sutherland, I. E. (1968, December). A head-mounted
three dimensional display. In Proceedings of the
December 9-11, 1968, fall joint computer conference,
part I (pp. 757-764). ACM.

MacKenzie, 1. S., & Ware, C. (1993, May). Lag as a
determinant of human performance in interactive
systems. In Proceedings of the INTERACT'93 and
CHI'93 conference on Human factors in computing
systems (pp. 488-493). ACM.

Rekimoto, J. (1995, March). A vision-based head
tracker for fish tank virtual reality-VR without head
gear. In Virtual Reality Annual International
Symposium, 1995. Proceedings. (pp. 94-100). IEEE.
Lee, J. (2007). Head tracking for desktop VR displays
using the Wii remote. Published online at
http://www. cs. cmu. edu/johnny/projects/wii.
Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993,
September). Surround-screen projection-based
virtual reality: the design and implementation of the
CAVE. In Proceedings of the 20th annual conference
on Computer graphics and interactive
techniques (pp. 135-142). ACM.
OpenNI Framework, Available
http://www.openni.org.

NITE Middleware, Available online at
http://www.primesense.com/solutions/nitemiddlewa
re.

Official OpenGL website, http://www.opengl.org.
Official Unity3D website, http://unity3d.com.

Lee, Johnny Chung. "Hacking the nintendowii
remote." IEEE pervasive computing 7, no. 3 (2008).
TrackIR — Premium head tracking for gaming,
official website http://www.naturalpoint.com/trackir.
FaceAPI from Seeing Machines, Available online at
http://www.seeingmachines.com/product/faceapi.
Parvizi, E., & Wu, Q. J. (2007, October). Real-time
3d head tracking based on time-of-flight depth
sensor. In Tools with Artificial Intelligence, 2007.
ICTAI 2007. 19th IEEE International Conference
on (Vol. 1, pp. 517-521). IEEE.

Gokturk, S. B., & Tomasi, C. (2004, July). 3D head
tracking based on recognition and interpolation using
a time-of-flight depth sensor. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference
on (Vol. 2, pp. II-1I). IEEE.

Moreno, F., Tarrida, A., Andrade-Cetto, J., &
Sanfeliu, A. (2002). 3D real-time head tracking
fusing color histograms and stereovision. In Pattern
Recognition, 2002. Proceedings. 16th International
Conference on (Vol. 1, pp. 368-371). IEEE.

Skewed frustum/off-axis projection for head tracking
in OpenGL, Available at
http://stackoverflow.com/questions/16723674/skewe
d-frustum-off-axis-projection-for-head-tracking-
inopengl.

online at

[17]

(18]

[19]

OpenGL FAQ, Available online at
http://www.opengl.org/wiki/FAQ.

Djajadiningrat, J. P., & Gribnau, M. W. (1998).
Desktop VR using QuickDraw 3D, Part
1. MacTech, 14(7), 32-43.

Borenstein, G. (2012). Making things see: 3D vision
with kinect, processing, Arduino, and MakerBot. "

O'Reilly Media, Inc.

