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Abstract— In this research article, the path planning of a 

mobile robot is done by using Ant Colony Optimization (ACO) 

with guidance factor. A two-dimensional (2-D) threat map 

structure design for path planning strategy is utilized, in which 

threat points are fixed in the path of moving robot. The two main 

objectives of this research are; firstly, to reach the mobile robot 

at the target position by using optimal route using ACO strategy 

and secondly, by using guidance factor all the ants of ACO arrive 

at the fixed targeted area. Moreover, the results of the proposed 

algorithm compares with the classical ant system methodology. 

The simulated results show that the design method has short path 

planning and less steady state error to reach the designated path 

robustly.  

 

Index Terms— Ant Colony Optimization (ACO), Path 

Planning, Mobile Robot, Guidance Factor, VORONOI Diagram. 

I.   INTRODUCTION 

The mobile robot track or path planning is the most basic and 

the most important part of mission planning. Proper trajectory 

planning will help robot effectively to avoid threats, shorten 

the distance length, and increase their survival probability and 

efficiency. The robot path-planning problem is a 

combinatorial optimization problem and an important branch 

of the optimization field. It is mainly through the study of 

mathematical methods to find the optimal arrangement, 

grouping or screening of discrete events. Such problems 

usually increase with the scale [1], [2]. 

The distance and time complexity for solving the problem 

increases exponentially, which cannot be solved by 
conventional methods. The path planning algorithms is 

divided into two categories:  

 One is the traditional classic algorithm 

 The other is the modern intelligent algorithm  

Among them, the former mainly includes dynamic 

programming method, steepest descent method and optimal 

control method. Previously different searching methods are 

done which includes grid search method, artificial potential 

field method, neural network method, and fuzzy logic-based 

path planning algorithm, etc. [3].   

Recently, the most commonly used method for path planning 
is to use the VORONOI diagram to construct the initial 

optional path set or set the navigation nodes. After that, select 

the appropriate path through the intelligent optimization 

algorithm. The disadvantage of this method is that the 

determination of the location and number of navigation nodes 

often requires repeated consideration. The construction of the 

VORONOI map determines the accuracy of the trajectory cost 

because the ant can only find the trajectory on the VORONOI 

map, not on the outer space. In addition, whenever the threat 

field model changes the navigation nodes and VORONOI 

graphs need to be reconstructed [4]. Therefore, this method is 

not adaptable for sudden new threats. In this paper, an Ant 

Colony Optimization (ACO) algorithm that introduces 

guidance factor is studied. Without the need to set navigation 

nodes and construct a VORONOI map it can automatically 

search for the minimum cost track in free space and has strong 

adaptive ability. 

II.  PROBLEM DESCRIPTION OF PATH PLANNING   

A.  Representation of Planning Space 

This article assumes that the mobile robot keeps its speed 

unchanged during the whole mission and the enemy's defense 

zone is in a flat area. Therefore, it does not need to consider 

the use of terrain factors for threat avoidance maneuvers and 
the path-planning problem can reduce to a two-dimensional 

navigation trace planning problem. However, it still needs to 

consider the survivability of the mobile robot during the 

execution of the mission and the effectiveness of the mission 

and consider the real-time nature of the planning algorithm, so 

it is still a relatively special optimization problem [5]. 

Although the right angle grid division of planning space, from 

the current node to the next adjacent node, until the target 

node is found, the track connecting the start node and the 

target node is formed and the cost model and optimization 

algorithm based on the grid graph are used to solve the 

optimal path. Each node in the grid graph needs to connect the 
adjacent nodes with the weighted directed edge. Therefore, the 

data structure of the algorithm with the current node in the 

center. The grid size ‘G’ needs to be set reasonably according 

to the actual problem scale and the distribution of threat 

points. 

B.  Optimized Path 

In practice, the path with acceptable range and less than a 

certain detectability index  often use as the mission route, so 

the cost function shown below in the formula, i.e., Eq.1, is 

used to describe the performance index of the selected path, 

which is calculated by the weighting method of the shortest 

route and the least detectability path. 

 

𝜔 = ∫ [𝛽𝜔𝑡(𝑆) + (1 − 𝛽)𝜔𝑓(𝑆)]
1

0
𝑑𝑠                                   (1) 

 

Here in the formula: 
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ω = The optimization objective function 

l = The track path;  

𝜔𝑡(𝑆) = The threat cost of the route 

𝜔𝑓(𝑆) = The battery consumption cost of the route 

β = The coefficient 

The β indicates the intentional choice made by the route setter 

in the course of making the route according to the task 

arrangement [6].  

The battery consumption cost is a function of range and the 

threat cost is associated with the detectability index of the 

mobile robot, which can be calculated on the detection 

probability of the mobile robot. 

III.  CONSTRUCTION OF ACO ALGORITHM FOR 

PATH PLANNING 

The ACO algorithm was first used to solve the Traveling 

Salesman Problem (TSP). There are some difficulties in 

applying the algorithm to the trajectory or path planning 

problem, which mainly reflected in the following two aspects: 

 The location and number of track nodes are not fixed. 

In general combinatorial optimization problems, such 

as TSP, the nodes of the path fixed, so it is only a 

combination of several nodes to achieve optimization 
and all nodes must go through and can only go 

through once. Therefore, by constructing a set of 

Tabu nodes (nodes that have been passed), the 

remaining nodes are a set of nodes to be selected, 

while the path planning problem is a free search 

space and there is no fixed node location. There is no 

fixed number of nodes and there are no known path 

nodes in the space. Therefore, these factors bring 

great difficulty to the planning.  

 How to ensure that the target node is reached. The 

TSP problem returns all nodes to the starting node 
after one pass, so the target node is the starting node 

and the target node of the track-planning problem is 

different from the starting node. Because ACO 

constructs a state transition strategy according to 

pheromones and heuristic factors and carries out local 

search according to probability, the visibility is 

limited to the local range, so how to ensure that the 

target node found is the key problem to complete the 

track planning [7]. 

This research solves the above two problems by constructing 

ACO algorithm reasonably.  

The Eq. 1, set the maximum allowable number of track nodes. 
The robot has a maximum range parameter, i.e., the distance 

of the mobile robot during the entire route that is limited by 

the battery and duration time allocation of the route. Keeping 

the maximum track length as Lmax, the distance Lp of each 

span should satisfy by:  

 

𝐿𝑝 ≤  𝐿𝑚𝑎𝑥                                                                          (2) 

 

According to Eq. 2, the number of track nodes should not 

exceed from a certain range, which limits by the conditions of 
the mobile robot itself. In addition, from Eq. 1, it must be 

known that the path cost includes the cost of battery 

consumption and the track with high battery consumption may 

increase the track cost. The cost of battery consumption must 

also meet a certain range, beyond which it consider 

unacceptable. Therefore, although the track node is not fixed, 

the maximum number of nodes can be set. When the 

maximum number of nodes exceeds, the track is considered as 
infeasible and abandoned. 

Taking node j as an example, if the distance between node j 

and target node D is djD, then the guidance factor is δj=1/djD. 

In the conventional state transition strategy, there is little 

difference in the heuristic factors of the adjacent nodes in the 

house map, so the local predictability of the target node is not 

strong, especially at the beginning of the iteration of the 

algorithm, i.e., the pheromones between the nodes are almost 

the same. The state transition is easy to fall into blind 

selection, so it is difficult to reach the target node quickly. 

According to δj=1/djD, the farther away the node is from the 

target node, the larger the guidance factor is; otherwise, the 
smaller the guidance factor is. Therefore, in the state transition 

strategy, the introduction of guidance factor can effectively 

reduce the blindness of ant search and make ants search track 

in the direction of the target node [8]. 

A.  Pheromone Up gradation 

The planning space determined according to the size of the 

grid divided and the positions of the starting point, i.e., the 

target point and the threat point. Let the coordinates of the two 

points in the space be (xmin, ymin) and (xmax, ymax) and set 

the grid size to G, then the grid has a total number of rows hN 

= (ymax-ymin)/G, and the total number of columns vN = 

(ymax-ymin)/G, where n is the number of nodes, n = hN vN, 

and the grid node number pj with coordinates (xj, yj) is 

calculated as follows in Eq. 3: 
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                              (3) 

The pheromone matrix τ establish by Eq. 3, where τ is an n × 

n matrix. 

B.  Heuristic Factor 

The heuristic factor is mainly used to improve the visibility of 
node selection, speed up the convergence speed of the 

algorithm and make the algorithm quickly converge to the 

track with the minimum cost. The cost of this study mainly 

comes from the threat cost, so the heuristic factor is designed 

as the reciprocal of the threat cost point [9]. Suppose there are 

B threat points and the coordinate of the i threat point is (xi, 

yi), then the threat cost from node j to threat point i is 

expressed as: 
 

222 ])()/[(1 ijijji yyxx                                     (4) 

According to Eq. 4, the cost of node j to all threat points is 

shown in Eq. 5. 
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The heuristic factor of a node is equal to the inverse of the 

total threat cost, that is ηj = 1/εj, so when the node threat cost is 
small, the heuristic factor is large and the visibility is high; 
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otherwise the visibility is low. The heuristic factor plays a role 

in accelerating the convergence of the algorithm but compared 

to the pheromone, the proportion should not be too large; 

otherwise the pheromone cannot play a guiding role [10]. 

C.  State Transition Strategy 

Let the size of the ant colony be m and τji (n) represents the 

pheromone concentration of the track at nodes j to i when 

iterating n times. In the initial iteration, the pheromone 

concentration on each path is same. Let τji (0) = h (h is a 

constant). Ant k (k =1, 2,..., m) determines the transfer 

direction according to the pheromone concentration on each 
path during the movement. Pk

ji (n) represents the probability of 

the nth iteration ant k transferring from node j to node i. The 

calculation formula is as follows, i.e., Eq. 6; 
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kik TBA   

Among them, Tk use to record the nodes passed by ant k in this 

iteration and Tk is dynamically adjusted as ants continue to 

choose the next node.  

 

Here: 

Tk represents all the unpassed nodes,  

Bj represents the adjacent nodes of node j,  

Ak represents the set of nodes to be selected by ant k in the 
next step.  

 

Unlike the general TSP problem the nodes to be selected are 

not all the remaining unpassed nodes Tk but a node set 

composed of adjacent nodes and exclude the nodes that have 

been passed. Ants continue to search for nodes in the local 

area and finally reach the target node to complete a track. In 

order to ensure that the ant can finally reach the target node, 

unlike the general ACO algorithm, the state transition 

probability of this study introduces the guidance factor 𝛿𝑗(n), 

so that the ant search has a certain direction, even if the ant 

searches for the track in the direction of the target node, in 

which α, β and γ represent the importance parameters of 

pheromone, heuristic factor and guidance factor respectively. 

The simulation practice shows that the values of β and γ 

should not be too large; otherwise the algorithm is easy to 

stagnate. In addition, for the nodes in Ak that are too close to 

the threat point, the purpose of not selecting the node is 

achieved by setting the critical value R of the heuristic factor. 

When the heuristic factor ηj of a node is less than R, ηj is 

infinitesimal. Then the probability of selecting the 

infinitesimal node is almost zero, so as to achieve the purpose 
of excluding the node, thereby ensuring that the algorithm will 

not pass through the threat node. 

D.  Pheromone Update Strategy 

Each time the iteration n is increased the pheromone on each 

path will volatilize once, the degree of volatilization of the 

pheromone expressed by the parameter (1-ρ) and all ants 

complete an iterative cycle. The concentration of pheromones 

in each track segment is adjusted according to Eq. 7 and Eq. 8. 
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Among them, ∆𝜏𝑗𝑖(𝑛)
𝑏 represents the track corresponding to 

the minimum cost ant in the nth iteration different from the 

general algorithm, pheromone enhancement performed on the 

tracks of all ants. This paper only considers the pheromone 

enhancement of the minimum cost track in order to speed up 

the convergence of the algorithm, but in order to prevent the 

pheromone on some sides from growing too fast, the range of 

pheromone size is limited to an interval to avoid stagnation of 

the algorithm. 
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Among them, Q is a constant, which means that pheromone 

increases the intensity coefficient; 𝐿𝑁
𝑏  represents the minimum 

track cost in the nth iteration. The values of Q and ρ are 

determined according to the scale of the solution. The 

calculation stopped when the number of iterations is fixed or 

when the change of the solution is not obvious. 

IV.  PATH PLANNING SIMULATION AND RESULTS 

In order to verify the performance of the proposed algorithm, 

this paper uses MATLAB for programming simulation. The 

threat cost from node T to target node D is high, so to track 

the optimize path and its parameters, see the Table 1. 
 

Table I: Threat Area Point, Starting Point and Target Point Coordinates 

of Mobile Robot 

 
The simulation parameters of the algorithm are nmax = 145, m 

= 12, α = 1, β = 0.525, γ = 0.25, ρ = 0.15, Q = 50, R = 4, G = 

2, Lm = 30. The parameter nmax denotes the maximum number 

of iterations; Lmax ensures that the battery consumption of the 

robot is within the allowable range. The Fig. 1 shows the 

optimal track, by using the proposed ant system strategy. It 

shows that the design algorithm shows better results as 

compared to ant system. The fitness calculation can be seen in 
Fig. 2 that the minimum cost track is constantly adjusted with 
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No. Coordinates No. Coordinates 

1 (2,25) 7 (20,38) 

2 (11,29) 8 (21,27) 

3 (12,20) 9 (22,32) 

4 (13,30) 10 (24,19) 

5 (16,32) 11 (28,37) 

6 (16,39) 12 (37,34) 
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the iteration and finally the global minimum cost track is 

obtained.  

 

Fig. 1: Optimal Track under Different Weight Coefficients 

 

 
Fig. 2: Iteration of Optimal Individual Changing with Fitness 

 

V.  CONCLUSION 

In this paper the ACO algorithm is applied for the path-
planning problem of mobile robot. By solving major problems 

of path planning and introducing the guidance factor into the 

state transition strategy, the convergence speed of the 

algorithm guaranteed that the ant finally completes the track 

search. To set the current optimal path pheromone, update the 

strategy and setting the pheromone at the same time to 

improve the speed of the algorithm and at the same time 

prevents the algorithm from falling into a local optimum and 

stagnation. Simulation results show that the algorithm has 

reasonable results. Ants automatically find the target nodes in 

free space without setting navigation nodes and constructing 
VORONOI diagram and the convergence speed is fast.  It 

overcomes the shortcomings of traditional ant system, i.e., the 

navigation nodes need to be set in advance and VORONOI 

diagram be constructed and has an encouraging application 

prospect in the field of track planning.  
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